Wave-breaking and weak instability for the stochastic modified two-component Camassa-Holm equations

被引:1
作者
Zhao, Yongye [1 ]
Li, Yongsheng [2 ]
Chen, Fei [3 ]
机构
[1] Guangzhou Maritime Univ, Dept Basic Courses, Guangzhou 510725, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[3] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Shandong, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 04期
关键词
Stochastic modified two-component Camassa-Holm equations; Wave-breaking; Breaking rate; Stability; Exiting time; SHALLOW-WATER EQUATION; WELL-POSEDNESS; NONUNIFORM DEPENDENCE; INITIAL DATA; BLOW-UP; EXISTENCE; EULER;
D O I
10.1007/s00033-023-02030-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the stochastic modified two-component Camassa-Holm equations. For the periodic boundary value problem for this SPDE, we first study the local existence, uniqueness and blow-up criterion of a solution in Sobolev spaces H-s with s > 5/2. Particularly, for the linear non-autonomous noise case, we study the wave-breaking phenomenon. When wave-breaking occurs, we estimate the corresponding probability and the breaking rate of the solutions. Finally, we study the noise effect on the dependence on initial data. It is shown that the noise cannot improve the stability of exiting times and the continuity of solution map at the same time.
引用
收藏
页数:27
相关论文
共 41 条
[1]   Stochastic Camassa-Holm equation with convection type noise [J].
Albeverio, Sergio ;
Brzezniak, Zdzislaw ;
Daletskii, Alexei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 276 :404-432
[2]   Global existence, blow-up and stability for a stochastic transport equation with non-local velocity [J].
Alonso-Oran, Diego ;
Miao, Yingting ;
Tang, Hao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 335 :244-293
[3]   A Local-in-Time Theory for Singular SDEs with Applications to Fluid Models with Transport Noise [J].
Alonso-Oran, Diego ;
Rohde, Christian ;
Tang, Hao .
JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Chen Y., 2023, J MATH PHYS, V64
[6]   On the stochastic two-component Camassa-Holm system driven by pure jump noise [J].
Chen, Yong ;
Li, Xiaoxiao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 339 :476-508
[7]  
Chen Y, 2021, COMMUN MATH SCI, V19, P607
[8]   Well-posedness and Large Deviations of the Stochastic Modified Camassa-Holm Equation [J].
Chen, Yong ;
Gao, Hongjun .
POTENTIAL ANALYSIS, 2016, 45 (02) :331-354
[9]   Well-posedness for stochastic Camassa-Holm equation [J].
Chen, Yong ;
Gao, Hongjun ;
Guo, Boling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) :2353-2379
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243