Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging

被引:2
作者
Wu, Bingxia [1 ,2 ]
Cheng, Chuanli [2 ,3 ]
Qi, Yulong [4 ]
Zhou, Hongyu [2 ]
Peng, Hao [2 ]
Wan, Qian [2 ]
Liu, Xin [2 ]
Zheng, Hairong [2 ]
Zhang, Huimao [5 ]
Zou, Chao [2 ,3 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
[3] Imaging Res Inst Innovat Med Equipment, Shenzhen, Peoples R China
[4] Peking Univ, Radiol Dept, Shenzhen Hosp, Shenzhen, Peoples R China
[5] Jilin Univ, Radiol Dept, Bethune Hosp 1, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
Supraclavicular adipose tissue; Magnetic resonance imaging; Brown adipose tissue; Deep learning; Fat fraction; FAT-FRACTION; WATER-FAT; BROWN; MRI; IDENTIFICATION; VOLUME; BAT;
D O I
10.1007/s10334-022-01056-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To achieve efficient segmentation of human supraclavicular adipose tissue (sclavAT) using high-resolution T2-weighted magnetic resonance images.Methods High-resolution 1.0 mm isotropic 3D T2-weighted images covering human supraclavicular area were acquired in transverse or coronary plane from 29 volunteers using a 3.0 T MRI scanner. There were typically 144/288 slices for the transverse/coronary scans for each subject, which amounts to a total of 6816 images in 29 volunteers. A U-NET network was trained to segment the supraclavicular adipose tissue (sclavAT). The performance of the automatic segmentation method was evaluated by comparing the output results with the manual labels using the quantitative indices of dice similarity coefficient (DSC), precision rate (PR), and recall rate (RR). The auto-segmented images were used to calculate the sclavAT volumes and registered to the MR fat fraction (FF) images to quantify the fat component of the sclavAT area. The relationship between body mass index (BMI), the volume and FF of sclavAT area was evaluated for all subjects.Results The DSC, PR and RR of the automatic sclavAT segmentation method on the testing datasets were 0.920 +/- 0.048, 0.915 +/- 0.070 and 0.930 +/- 0.058. The volume and the mean FF of sclavAT were both found to be strongly correlated to BMI, with the correlation coefficient of 0.703 and 0.625 (p < 0.05), respectively. The averaged computation time of the automatic segmentation method was approximately 0.06 s per slice, compared to more than 5 min for manual labeling.Conclusion The present study demonstrates that the proposed automatic segmentation method using U-Net network is able to identify human sclavAT efficiently and accurately.
引用
收藏
页码:641 / 649
页数:9
相关论文
共 45 条
[1]   Human Brown Adipose Tissue Estimated With Magnetic Resonance Imaging Undergoes Changes in Composition After Cold Exposure: An in vivo MRI Study in Healthy Volunteers [J].
Abreu-Vieira, Gustavo ;
Mishre, Aashley S. D. Sardjoe ;
Burakiewicz, Jedrek ;
Janssen, Laura G. M. ;
Nahon, Kimberly J. ;
van der Eijk, Jari A. ;
Riem, Titia T. ;
Boon, Mariette R. ;
Dzyubachyk, Oleh ;
Webb, Andrew G. ;
Rensen, Patrick C. N. ;
Kan, Hermien E. .
FRONTIERS IN ENDOCRINOLOGY, 2020, 10
[2]   Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function [J].
Aurelio, Yuri Sousa ;
de Almeida, Gustavo Matheus ;
de Castro, Cristiano Leite ;
Braga, Antonio Padua .
NEURAL PROCESSING LETTERS, 2019, 50 (02) :1937-1949
[3]   Accurate quantification of brown adipose tissue mass by xenon-enhanced computed tomography [J].
Branca, Rosa T. ;
McCallister, Andrew ;
Yuan, Hong ;
Aghajanian, Amir ;
Faber, James E. ;
Weimer, Nicholas ;
Buchanan, Riley ;
Floyd, Carlos S. ;
Antonacci, Michael ;
Zhang, Le ;
Burant, Alex .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (01) :174-179
[4]  
Carter Brett W, 2008, Proc (Bayl Univ Med Cent), V21, P328
[5]   Brown Adipose Tissue -- When It Pays to Be Inefficient. [J].
Celi, Francesco S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (15) :1553-1556
[6]   Measurement of Human Brown Adipose Tissue Volume and Activity Using Anatomic MR Imaging and Functional MR Imaging [J].
Chen, Yin-Ching Iris ;
Cypess, Aaron M. ;
Chen, Yih-Chieh ;
Palmer, Matthew ;
Kolodny, Gerald ;
Kahn, C. Ronald ;
Kwong, Kenneth K. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (09) :1584-1587
[7]   Fat-Water Separation Using a Region-Growing Algorithm With Self-Feeding Phasor Estimation [J].
Cheng, Chuanli ;
Zou, Chao ;
Liang, Changhong ;
Liu, Xin ;
Zheng, Hairong .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (06) :2390-2401
[8]  
COLLIGNON A, 1995, COMP IMAG VIS, V3, P263
[9]   Identification and Importance of Brown Adipose Tissue in Adult Humans. [J].
Cypess, Aaron M. ;
Lehman, Sanaz ;
Williams, Gethin ;
Tal, Ilan ;
Rodman, Dean ;
Goldfine, Allison B. ;
Kuo, Frank C. ;
Palmer, Edwin L. ;
Tseng, Yu-Hua ;
Doria, Alessandro ;
Kolodny, Gerald M. ;
Kahn, C. Ronald .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (15) :1509-1517
[10]   MRI characterization of brown adipose tissue under thermal challenges in normal weight, overweight, and obese young men [J].
Deng, Jie ;
Neff, Lisa M. ;
Rubert, Nicholas C. ;
Zhang, Bin ;
Shore, Richard M. ;
Samet, Jonathan D. ;
Nelson, Paige C. ;
Landsberg, Lewis .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (04) :936-947