On Bifurcation from Steady-State Solutions to Rotating Waves in the Kuramoto-Sivashinsky Equation

被引:1
作者
李常品
杨忠华
陈关荣
机构
[1] Shanghai 200444
[2] P.R. China
[3] Department of Electronic Engineering
[4] Shanghai Normal University
[5] Shanghai University
[6] City University of Hong Kong
[7] Department of Mathematics
[8] Shanghai 200234
关键词
bifurcation; nonlinear Galerkin method; Kuramoto-Sivashinsky(K-S);
D O I
暂无
中图分类号
TB11 [工程数学];
学科分类号
0701 ; 070104 ;
摘要
In this paper, we consider the detection and calculation of bifurcation from nontrivial steady-state solutions to rotating wave solutions of the Kuramoto-Sivashinsky(K-S) equation by using the nonlinear Galerkin method. Numerical results show the efficiency and advantages of the nonlinear Galerkin method over the conventional Galerkin method in this application.
引用
收藏
页码:286 / 291
页数:6
相关论文
共 50 条
  • [31] Steady-state solutions for a reaction-diffusion equation with Robin boundary conditions: Application to the control of dengue vectors
    Almeida, Luis
    Bliman, Pierre-Alexandre
    Nguyen, Nga
    Vauchelet, Nicolas
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2024, 35 (03) : 382 - 408
  • [32] Stability of steady-state solutions of Jeffcott rotor with varying rotational speed
    Aljabr, Abdulelah
    Flashner, Henryk
    NONLINEAR DYNAMICS, 2025, 113 (08) : 7985 - 8001
  • [33] Steady-state solutions of the templator model in chemical self-replication
    Shi, Yao
    Cao, Qian
    Wu, Jianhua
    Jia, Yunfeng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (04) : 1068 - 1097
  • [34] Steady-state solutions of the templator model in chemical self-replication
    Yao Shi
    Qian Cao
    Jianhua Wu
    Yunfeng Jia
    Journal of Mathematical Chemistry, 2021, 59 : 1068 - 1097
  • [35] Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
    Sun, Linan
    Shi, Junping
    Wang, Yuwen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1267 - 1278
  • [36] Bifurcation, exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schrodinger equation
    Wang, W
    Sun, JH
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10): : 3295 - 3305
  • [37] Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross–Pitaevskii Equation
    Tomáš Dohnal
    Hannes Uecker
    Journal of Nonlinear Science, 2016, 26 : 581 - 618
  • [38] A QUALITATIVE ANALYSIS OF POSITIVE STEADY-STATE SOLUTIONS FOR A MUSSEL-ALGAE MODEL WITH DIFFUSION
    Guo, Gaihui
    Yang, Xiaoyi
    Yuan, Hailong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (03) : 356 - 382
  • [39] Positive steady-state solutions for a vegetation-water model with saturated water absorption
    Guo, Gaihui
    Qin, Qijing
    Pang, Danfeng
    Su, Youhui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [40] POSITIVE STEADY-STATE SOLUTIONS FOR A WATER-VEGETATION MODEL WITH THE INFILTRATION FEEDBACK EFFECT
    Guo, Gaihui
    Zhao, Shihan
    Wang, Jingjing
    Gao, Yuanxiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 426 - 458