On Bifurcation from Steady-State Solutions to Rotating Waves in the Kuramoto-Sivashinsky Equation

被引:1
|
作者
李常品
杨忠华
陈关荣
机构
[1] Shanghai 200444
[2] P.R. China
[3] Department of Electronic Engineering
[4] Shanghai Normal University
[5] Shanghai University
[6] City University of Hong Kong
[7] Department of Mathematics
[8] Shanghai 200234
关键词
bifurcation; nonlinear Galerkin method; Kuramoto-Sivashinsky(K-S);
D O I
暂无
中图分类号
TB11 [工程数学];
学科分类号
0701 ; 070104 ;
摘要
In this paper, we consider the detection and calculation of bifurcation from nontrivial steady-state solutions to rotating wave solutions of the Kuramoto-Sivashinsky(K-S) equation by using the nonlinear Galerkin method. Numerical results show the efficiency and advantages of the nonlinear Galerkin method over the conventional Galerkin method in this application.
引用
收藏
页码:286 / 291
页数:6
相关论文
共 50 条
  • [1] Steady state solutions to the conserved Kuramoto-Sivashinsky equation
    Trojette, Hela
    Eldoussouki, Ayman
    Abaidi, Mohamed
    Guedda, Mohammed
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (01) : 59 - 65
  • [2] On steady solutions of the Kuramoto-Sivashinsky equation
    Ishimura, N
    NAVIER-STOKES EQUATIONS: THEORY AND NUMERICAL METHODS, 2002, 223 : 45 - 51
  • [4] Bifurcation from an equilibrium of the steady state Kuramoto-Sivashinsky equation in two spatial dimensions
    Li, CP
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01): : 103 - 114
  • [5] Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation
    黄琼伟
    唐驾时
    CommunicationsinTheoreticalPhysics, 2011, 55 (04) : 685 - 687
  • [6] Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation
    Huang Qiong-Wei
    Tang Jia-Shi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (04) : 685 - 687
  • [7] STABILITY OF STEADY STATE SOLUTIONS OF THE FORCED KURAMOTO-SIVASHINSKY (KS) EQUATION
    Poteet, Miriam
    Usman, Muhammad
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2009, 4 (02): : 119 - 131
  • [9] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163
  • [10] ON THE BIFURCATION PHENOMENA OF THE KURAMOTO-SIVASHINSKY EQUATION
    Feudel, Fred
    Feudel, Ulrike
    Brandenburg, Axel
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1299 - 1303