Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation

被引:0
作者
时培明 [1 ,2 ]
韩东颖 [3 ]
刘彬 [2 ]
机构
[1] Key Laboratory of Measurement Technology and Instrument of Hebei Province Yanshan University
[2] College of Electrical Engineering,Yanshan University
[3] College of Vehicles and Energy Yanshan University
关键词
relative rotation; nonlinear dynamical system; parametric excitation; chaotic control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
070201 ; 070105 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincar map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
[41]   Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation [J].
Yan, T. ;
Yang, J. ;
Kitipornchai, S. .
NONLINEAR DYNAMICS, 2012, 67 (01) :527-540
[42]   Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory [J].
Wang, Yi-Ze .
APPLIED MATHEMATICAL MODELLING, 2017, 48 :621-634
[43]   Optimal control of parametric excitated nonlinear vibration system with delayed linear and nonlinear feedback controllers [J].
Liu, Can-Chang ;
Yue, Shu-Chang ;
Xu, Ying-Zi ;
Shen, Yu-Feng ;
Ren, Chuan-Bo ;
Liu, Lu ;
Jing, Dong .
Zhendong yu Chongji/Journal of Vibration and Shock, 2015, 34 (20) :6-9and50
[44]   Precise periodic solutions and uniqueness of periodic solutions of some relative rotation nonlinear dynamic system [J].
Wang Kun ;
Guan Xin-Ping ;
Qiao Jie-Min .
ACTA PHYSICA SINICA, 2010, 59 (06) :3648-3653
[45]   Chaotic dynamics of an extended Duffing-van der Pol system with a non-smooth perturbation and parametric excitation [J].
Hu, Sengen ;
Zhou, Liangqiang .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (11) :1015-1030
[46]   Optimal control for nonlinear dynamical system of microbial fed-batch culture [J].
Liu, Chongyang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) :252-261
[47]   Global Dynamic Characteristic of Nonlinear Torsional Vibration System under Harmonically Excitation [J].
Shi Peiming ;
Liu Bin ;
Hou Dongxiao .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2009, 22 (01) :132-139
[48]   Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory [J].
Wang, Yi-Ze ;
Wang, Yue-Sheng ;
Ke, Liao-Liang .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 83 :195-200
[49]   Parametric Excitation of Pre-Stressed Graphene Sheets under Magnetic Field: Nonlinear Vibration and Dynamic Instability [J].
Ghadiri, Majid ;
Hosseini, S. Hamed S. .
INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2019, 19 (11)
[50]   Stability of equilibrium state of a kind of nonlinear relative rotation dynamic system and associated harmonic approximate solution [J].
Meng, Zong ;
Liu, Bin .
ACTA PHYSICA SINICA, 2008, 57 (03) :1329-1334