Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation

被引:0
作者
时培明 [1 ,2 ]
韩东颖 [3 ]
刘彬 [2 ]
机构
[1] Key Laboratory of Measurement Technology and Instrument of Hebei Province Yanshan University
[2] College of Electrical Engineering,Yanshan University
[3] College of Vehicles and Energy Yanshan University
关键词
relative rotation; nonlinear dynamical system; parametric excitation; chaotic control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
070201 ; 070105 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincar map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
[31]   Approximate solution of a two-degree-of-freedom nonlinear system with parametric excitation [J].
Sun, YH ;
Ding, Q ;
Ye, M .
ELEVENTH WORLD CONGRESS IN MECHANISM AND MACHINE SCIENCE, VOLS 1-5, PROCEEDINGS, 2004, :1489-1492
[32]   Chaotic control of a nonlinear continuous-time system with uncertainty [J].
Xu, HB ;
Lu, BC ;
Chen, GJ .
PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, :3274-3276
[33]   Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation [J].
Zhang, Wen-Ming ;
Meng, Guang .
IEEE SENSORS JOURNAL, 2007, 7 (3-4) :370-380
[34]   Stability analysis of a relative rotation time-delay nonlinear dynamic system [J].
Liu Hao-Ran ;
Zhu Zhan-Long ;
Shi Pei-Ming .
ACTA PHYSICA SINICA, 2010, 59 (10) :6770-6777
[35]   Bifurcation of a kind of nonlinear-relative rotational system with combined harmonic excitation [J].
Meng Zong ;
Fu Li-Yuan ;
Song Ming-Hou .
ACTA PHYSICA SINICA, 2013, 62 (05)
[36]   The periodic solution problem of a relative rotation nonlinear system with nonlinear elastic force and generalized damping force [J].
Li Xiao-Jing ;
Yan Jing ;
Chen Xuan-Qing ;
Cao Yi .
ACTA PHYSICA SINICA, 2014, 63 (20)
[37]   Vibration and control of axially moving belt system: Analysis and experiment by parametric excitation [J].
Okubo, H ;
Takano, K ;
Matsushita, O ;
Watanabe, K ;
Hirase, Y .
JOURNAL OF VIBRATION AND CONTROL, 2000, 6 (04) :589-605
[38]   Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation [J].
El Ouni, M. H. ;
Ben Kahla, N. ;
Preurnont, A. .
ENGINEERING STRUCTURES, 2012, 45 :244-256
[39]   Study on robust control for parametric excitation nonlinear torsional vibration of a strip-rolling mill's mechanical and electrical drive system [J].
Han D.-Y. ;
Shi P.-M. ;
Zhao D.-W. .
Zhendong yu Chongji/Journal of Vibration and Shock, 2016, 35 (12) :1-6and21
[40]   Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation [J].
T. Yan ;
J. Yang ;
S. Kitipornchai .
Nonlinear Dynamics, 2012, 67 :527-540