Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation

被引:0
|
作者
时培明 [1 ,2 ]
韩东颖 [3 ]
刘彬 [2 ]
机构
[1] Key Laboratory of Measurement Technology and Instrument of Hebei Province Yanshan University
[2] College of Electrical Engineering,Yanshan University
[3] College of Vehicles and Energy Yanshan University
基金
中国国家自然科学基金;
关键词
relative rotation; nonlinear dynamical system; parametric excitation; chaotic control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
070105 ; 070201 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincar map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using non-feedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to period-motions by adding an excitation term.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [1] Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation
    Shi Pei-Ming
    Han Dong-Ying
    Liu Bin
    CHINESE PHYSICS B, 2010, 19 (09)
  • [2] Stability of nonlinear dynamical system of relative rotation and approximate solution under forced excitation
    Shi Pei-Ming
    Liu Bin
    ACTA PHYSICA SINICA, 2007, 56 (07) : 3678 - 3682
  • [3] Stability and approximate solution of a relative-rotation nonlinear dynamical system under harmonic, excitation
    Shi Pei-Ming
    Liu Bin
    Liu Shuang
    ACTA PHYSICA SINICA, 2008, 57 (08) : 4675 - 4684
  • [4] Nonlinear parametric excitation of an evolutionary dynamical system
    Ruelas, Rocio E.
    Rand, David G.
    Rand, Richard H.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2012, 226 (C8) : 1912 - 1920
  • [5] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
    刘爽
    赵双双
    孙宝平
    张文明
    ChinesePhysicsB, 2014, 23 (09) : 275 - 281
  • [6] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
    Liu Shuang
    Zhao Shuang-Shuang
    Sun Bao-Ping
    Zhang Wen-Ming
    CHINESE PHYSICS B, 2014, 23 (09)
  • [7] On control of nonlinear chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 783 - 787
  • [8] Nonlinear dynamical system and chaos synchronization
    Khan, Ayub
    Singh, Prempal
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05): : 1531 - 1537
  • [9] Suppression of chaos and basin erosion in a nonlinear relative rotation system by delayed position feedback
    Shang Hui-Lin
    Han Yuan-Bo
    Li Wei-Yang
    ACTA PHYSICA SINICA, 2014, 63 (11)
  • [10] Stability and approximate solution of a relative-rotation nonlinear dynamical system with coupled terms
    Shi Pei-Ming
    Liu Bin
    Jiang Jin-Shui
    ACTA PHYSICA SINICA, 2009, 58 (04) : 2147 - 2154