采伐干扰对大兴安岭落叶松-苔草沼泽植被碳储量的影响

被引:9
作者
牟长城
卢慧翠
包旭
王彪
崔巍
机构
[1] 东北林业大学生态研究中心
关键词
大兴安岭; 落叶松-苔草沼泽; 生物量; 碳储量; 净初级生产力; 采伐干扰;
D O I
暂无
中图分类号
S718.5 [森林生态学];
学科分类号
071012 ; 0713 ;
摘要
运用采伐干扰试验与树干解析法,对比分析了大兴安岭不同采伐强度(未采伐———对照、轻度择伐———25%、中度择伐———35%、强度择伐———50%)下落叶松-苔草沼泽的植被生物量、碳含量、碳储量、净初级生产力及年净固碳量的变化,揭示采伐干扰(5a后)对落叶松-苔草沼泽植被碳储量及固碳能力的影响规律。结果表明:①不同采伐强度样地植被生物量为(135.03±7.72)—(204.71±1.71)t/hm2,择伐使其降低了8.7%—34.0%(P<0.05),且呈现出随择伐强度增大而递减的变化规律;②择伐使群落建群种兴安落叶松和白桦(两树种各组分碳含量为(439.05±9.70)—(508.41±27.09)g/kg的树干和树叶碳含量降低了4.1%—11.7%(P<0.05),轻度和强度择伐使灌木层(444.87±5.40)—(472.52±9.44)g/kg与凋落物层(433.64±16.23)—(468.82±21.27)g/kg的碳含量降低了3.8%—5.9%和6.0%—7.5%(P<0.05),但择伐对草本层碳含量(399.34±83.65)—(419.20±23.75)g/kg无显著影响;③不同采伐强度样地植被碳储量为(61.16±0.67)—(99.61±1.47)t·C/hm2,择伐使其降低了15.5%—38.6%(P<0.05),且呈现随择伐强度增大而递减的变化规律;④不同采伐强度样地植被净初级生产力与年净固碳量在(6.48±0.28)—(11.87±0.92)t·hm-2·a-1和(3.52±0.21)—(6.29±0.92)t·C·hm-2·a-1之间,轻度和中度择伐使两者提高了69.1%—83.2%和52.0%—78.7%(P<0.05)。因此,轻度择伐和中度择伐能够提高落叶松-苔草沼泽净初级生产力与碳吸纳能力。
引用
收藏
页码:5286 / 5298
页数:13
相关论文
共 31 条
[11]  
Deposition, mineralization, and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf[J] . Daniel M. Alongi,Lindsay A. Trott,John Pfitzner.Continental Shelf Research . 2007 (20)
[12]   The carbon balance of North American wetlands [J].
Bridgham, Scott D. ;
Megonigal, J. Patrick ;
Keller, Jason K. ;
Bliss, Norman B. ;
Trettin, Carl .
WETLANDS, 2006, 26 (04) :889-916
[13]  
How strongly can forest management influence soil carbon sequestration?[J] . Robert Jandl,Marcus Lindner,Lars Vesterdal,Bram Bauwens,Rainer Baritz,Frank Hagedorn,Dale W. Johnson,Kari Minkkinen,Kenneth A. Byrne.Geoderma . 2006 (3)
[14]  
Carbon and nitrogen pools in Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China[J] . Yu Sheng Yang,Jianfen Guo,Guangshui Chen,Jinsheng Xie,Ren Gao,Zhen Li,Zhao Jin.Forest Ecology and Management . 2005 (1)
[15]   Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe [J].
Kowalski, AS ;
Loustau, D ;
Berbigier, P ;
Manca, G ;
Tedeschi, V ;
Borghetti, M ;
Valentini, R ;
Kolari, P ;
Berninger, F ;
Rannik, Ü ;
Hari, P ;
Rayment, M ;
Mencuccini, M ;
Moncrieff, J ;
Grace, J .
GLOBAL CHANGE BIOLOGY, 2004, 10 (10) :1707-1723
[16]  
Soil Carbon Dynamics after Forest Harvest: An Ecosystem Paradigm Reconsidered[J] . Ruth D. Yanai,William S. Currie,Christine L. Goodale.Ecosystems . 2003 (3)
[17]  
Carbon stocks in Norwegian forest soils and effects of forest management on carbon storage .2 Wit,H.,Kvindesland,S. Rapport fra skogforskningen . 1999
[18]  
Control of Nitrogen Loss from Forested Watersheds by Soil Carbon:Nitrogen Ratio andTree Species Composition[J] . Gary M. Lovett,Kathleen C. Weathers,Mary A. Arthur.Ecosystems . 2002 (7)
[19]  
Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: a process model simulation[J] . Changhui Peng,Hong Jiang,Michael J. Apps,Yanli Zhang.Ecological Modelling . 2002 (2)
[20]  
Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink –‐ a synthesis[J] . E. ‐D.Schulze,J.Lloyd,F. M.Kelliher,C.Wirth,C.Rebmann,B.Lühker,M.Mund,A.Knohl,I. M.Milyukova,W.Schulze,W.Ziegler,A. β.Varlagin,A. F.Sogachev,R.Valentini,S.Dore,S.Grigoriev,O.Kolle,M. I.Panfyorov,N.Tchebakova,NN.Vygodskaya.Global Change Biology . 2001 (6)