Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system

被引:0
作者
董恩增 [1 ,2 ]
陈增强 [1 ]
陈在平 [2 ]
倪建云 [2 ]
机构
[1] Department of Automation,Nankai University
[2] Department of Automation,Tianjin University of Technology
关键词
hyper-chaos; Chen system; pitchfork bifurcation; center manifold theorem;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
In this paper,a novel four dimensional hyper-chaotic system is coined based on the Chen system,which contains two quadratic terms and five system parameters.The proposed system can generate a hyper-chaotic attractor in wide parameters regions.By using the center manifold theorem and the local bifurcation theory,a pitchfork bifurcation is demonstrated to arise at the zero equilibrium point.Numerical analysis demonstrates that the hyper-chaotic system can generate complex dynamical behaviors,e.g.,a direct transition from quasi-periodic behavior to hyper-chaotic behavior.Finally,an electronic circuit is designed to implement the hyper-chaotic system,the experimental results are consist with the numerical simulations,which verifies the existence of the hyper-chaotic attractor.Due to the complex dynamic behaviors,this new hyper-chaotic system is useful in the secure communication.
引用
收藏
页码:92 / 100
页数:9
相关论文
共 21 条
[1]  
Yet another chaotic attractor. Chen G, Ueta T. International Journal of Bifurcation and Chaos . 1999
[2]  
Hyperchaos: laboratory experiment and numerical confirmation. Matsumoto T, Chua L O, Kobayashi K. IEEE Transactions on Circuits and Systems . 1986
[3]  
Qi G Y,Chen G R,van Wyk M A,van Wyk B J,Zhang Y H. Chaos Soliton. Fract . 2008
[4]  
Introduction to Applied Nonlinear Dynamical Systems and Chaos. Wiggins S. Springer-Verlag . 1990
[5]  
Wang X Y,Gao Y F. Commun. Nonlinear Sci. Numer. Simulat . 2010
[6]  
Qiu G X, Lin F L, Li Y P. Acta Physiologica Sinica . 2003
[7]  
Analysis and control for a new chaotic system via piecewise linear feedback. J. Zhang,W. Tang. Chaos Solitons Fractals . 2009
[8]  
Song Y Z. Chin. Phys. B . 2010
[9]  
Dynamical analysis and impulsive control of a new hyperchaotic system. Y. Li,X. Liu,H. Zhang. Mathematical and Computer Modelling . 2005
[10]  
Zhao Z,Yang L,Chen L S. Nonlinear Dynamics . 2011