THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT

被引:23
作者
SHI Dongyang ZHU Huiqing Department of Mathematics Zhengzhou University Zhengzhou China [450052 ]
机构
关键词
Bilinear finite element; superclose; superconvergence; anisotropic meshes; high accuracy;
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
<正>This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.
引用
收藏
页码:478 / 487
页数:10
相关论文
共 50 条
[41]   Superconvergence of finite volume element method for elliptic problems [J].
Zhang, Tie .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) :399-413
[42]   Superconvergence of immersed finite element methods for interface problems [J].
Cao, Waixiang ;
Zhang, Xu ;
Zhang, Zhimin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (04) :795-821
[43]   Superconvergence of finite volume element method for elliptic problems [J].
Tie Zhang .
Advances in Computational Mathematics, 2014, 40 :399-413
[44]   Superconvergence of mixed finite element approximations over quadrilaterals [J].
Ewing, RE ;
Liu, MM ;
Wang, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :772-787
[45]   FINITE ELEMENT METHOD WITH SUPERCONVERGENCE FOR NONLINEAR HAMILTONIAN SYSTEMS [J].
Chen, Chuanmiao ;
Tang, Qiong ;
Ru, Shufang .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (02) :167-184
[46]   Superconvergence of the finite element method for the Stokes eigenvalue problem [J].
Sheng, Ying ;
Zhang, Tie ;
Pan, Zixing .
CHAOS SOLITONS & FRACTALS, 2021, 144
[47]   SUPERCONVERGENCE AND FLUX RECOVERY FOR AN ENRICHED FINITE ELEMENT METHOD [J].
Attanayake, Champike ;
Chou, So-Hsiang .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (05) :656-673
[48]   Superconvergence of partially penalized immersed finite element methods [J].
Guo, Hailong ;
Yang, Xu ;
Zhang, Zhimin .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) :2123-2144
[49]   Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem [J].
Teofanov, Ljiljana ;
Zarin, Helena .
BIT NUMERICAL MATHEMATICS, 2009, 49 (04) :743-765
[50]   Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem [J].
Ljiljana Teofanov ;
Helena Zarin .
BIT Numerical Mathematics, 2009, 49 :743-765