THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT

被引:23
作者
SHI Dongyang ZHU Huiqing Department of Mathematics Zhengzhou University Zhengzhou China [450052 ]
机构
关键词
Bilinear finite element; superclose; superconvergence; anisotropic meshes; high accuracy;
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
<正>This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.
引用
收藏
页码:478 / 487
页数:10
相关论文
共 50 条
[21]   Lagrange interpolation and finite element superconvergence [J].
Li, B .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (01) :33-59
[22]   Convergence and superconvergence analysis of a new quadratic Hermite-type triangular element on anisotropic meshes [J].
Shi, Dongyang ;
Liang, Hui .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 212 (01) :257-269
[23]   Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems [J].
Li, JC .
APPLIED NUMERICAL MATHEMATICS, 2001, 36 (2-3) :129-154
[24]   LINEAR FINITE ELEMENT SUPERCONVERGENCE ON SIMPLICIAL MESHES [J].
Chen, Jie ;
Wang, Desheng ;
Du, Qiang .
MATHEMATICS OF COMPUTATION, 2014, 83 (289) :2161-2185
[25]   On the problem of superconvergence of finite element method algorithms [J].
A. A. Panin .
Computational Mathematics and Mathematical Physics, 2008, 48 :2211-2216
[26]   A new superconvergence for mixed finite element approximations [J].
Ewing, RE ;
Liu, MJ ;
Wang, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2133-2150
[27]   η%-Superconvergence of Finite Element Solutions and Error Estimators [J].
L. Zhang ;
T. Strouboulis ;
I. Babuška .
Advances in Computational Mathematics, 2001, 15 :393-404
[28]   η%-superconvergence of finite element solutions and error estimators [J].
Zhang, L ;
Strouboulis, T ;
Babuska, I .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) :393-404
[29]   Superconvergence of a nonconforming low order finite element [J].
Risch, U .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) :324-338
[30]   Superconvergence of new mixed finite element spaces [J].
Hyon, YunKyong ;
Kwak, Do Young .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) :4265-4271