Multichannel fetal magnetocardiography using SQUID bootstrap circuit

被引:0
|
作者
张树林 [1 ,2 ]
张国峰 [1 ,2 ]
王永良 [1 ,2 ]
刘明 [3 ,2 ]
李华 [4 ,2 ,5 ]
邱阳 [4 ,2 ,5 ]
曾佳 [3 ,2 ,5 ]
孔祥燕 [1 ,2 ]
谢晓明 [4 ,6 ]
机构
[1] State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and InformationTechnology (SIMIT), Chinese Academy of Sciences (CAS)
[2] Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration Between CAS-Shanghai and FZJ
[3] State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences (CAS)
[4] State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS)
[5] University of the Chinese Academy of Sciences
[6] Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration Between CAS–Shanghai and FZJ
关键词
SQUID; gradiometer; fetal magnetocardiography;
D O I
暂无
中图分类号
R714.5 [胎儿];
学科分类号
100211 ;
摘要
Fetal magnetocardiography(MCG) is a sophisticated non-invasive technique for the fetal heart diagnosis. We constructed a multichannel fetal MCG system based on a novel superconducting quantum interference device(SQUID) direct readout scheme called SQUID bootstrap circuit(SBC). The system incorporates four SBC gradiometers for the signal detection and three SBC magnetometers as the references. The fetal MCG signal at a 28-weeks’ gestation was measured. By the fetal MCG signal separation and average, the P-wave and QRS complex can be clearly identified. These results indicate that the SBC is one of the most promising techniques for the fetal MCG recordings.
引用
收藏
页码:518 / 520
页数:3
相关论文
共 50 条
  • [21] SQUID Gradiometer Module for Fetal Magnetocardiography Measurements Inside a Thin Magnetically Shielded Room
    Wang, Jialei
    Yang, Kang
    Yang, Ruihu
    Kong, Xiangyan
    Chen, Wei
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (02)
  • [22] New insights into fetal atrioventricular block using fetal magnetocardiography
    Hornberger, Lisa K.
    Collins, Kathryn
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (01) : 85 - 86
  • [23] SQUID gradiometry for magnetocardiography using different noise cancellation techniques
    Bick, M
    Sternickel, K
    Panaitov, G
    Effern, A
    Zhang, Y
    Krause, HJ
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) : 673 - 676
  • [24] Baseline optimization of SQUID gradiometer for magnetocardiography
    李华
    张树林
    邱阳
    张永升
    张朝祥
    孔祥燕
    谢晓明
    Chinese Physics B, 2015, 24 (02) : 475 - 477
  • [25] Baseline optimization of SQUID gradiometer for magnetocardiography
    Li Hua
    Zhang Shu-Lin
    Qiu Yang
    Zhang Yong-Sheng
    Zhang Chao-Xiang
    Kong Xiang-Yan
    Xie Xiao-Ming
    CHINESE PHYSICS B, 2015, 24 (02)
  • [26] SQUID Sensor Emulator for Magnetocardiography System
    Ahn, C. B.
    Kim, P. K.
    Cho, S. H.
    Oh, S. J.
    Park, H. C.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 2668 - 2670
  • [27] MULTICHANNEL SQUID
    KADO, H
    UEHARA, G
    OGATA, H
    ITOZAKI, H
    IEICE TRANSACTIONS ON ELECTRONICS, 1995, E78C (05) : 511 - 518
  • [28] Vector fetal magnetocardiography
    Rassi, D
    Zhuravlev, Y
    Lewis, MJ
    Emery, SJ
    BIOMAG 96: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON BIOMAGNETISM, VOLS I & II, 2000, : 533 - 536
  • [29] Multichannel SQUID magnetometry using double relaxation oscillation SQUID's
    vanDuuren, MJ
    Lee, YH
    Adelerhof, DJ
    Kawai, J
    Kado, H
    Flokstra, J
    Rogalla, H
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1996, 6 (01) : 38 - 44
  • [30] Magnetocardiography for fetal arrhythmias
    Strasburger, Janette F.
    Cheulkar, Bageshree
    Wakai, Ronad T.
    HEART RHYTHM, 2008, 5 (07) : 1073 - 1076