Compatible-invariant subset analysis of deterministic finite automata via semi-tensor product of matrices approach

被引:1
作者
Zhang Zhipeng
Chen Zengqiang
Liu Zhongxin
机构
[1] Tianjin Key Laboratory of Intelligent Robotics,Nankai University
[2] College of Computer and Control Engineering,Nankai University
基金
中国国家自然科学基金;
关键词
discrete event dynamical systems(DEDSs); finite automata; compatible invariant; semi-tensor product(STP); compatible feasible event matrix;
D O I
10.19682/j.cnki.1005-8885.2018.0028
中图分类号
TP301.1 [自动机理论];
学科分类号
081202 ;
摘要
The compatible-invariant subset of deterministic finite automata( DFA) is investigated to solve the problem of subset stabilization under the frameworks of semi-tensor product( STP) of matrices. The concepts of compatibleinvariant subset and largest compatible-invariant subset are introduced inductively for Moore-type DFA,and a necessary condition for the existence of largest compatible-invariant subset is given. Meanwhile,by using the STP of matrices,a compatible feasible event matrix is defined with respect to the largest compatible-invariant subset.Based on the concept of compatible feasible event matrix,an algorithm to calculate the largest compatible-invariant subset contained in a given subset is proposed. Finally,an illustrative example is given to validate the results.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 15 条
  • [1] Modeling and reachability analysis of synchronizing transitions bounded Petri net systems based upon semi-tensor product of matrices
    Gao Na
    Han Xiaoguang
    Chen Zengqiang
    Zhang Qing
    [J]. The Journal of China Universities of Posts and Telecommunications, 2017, 24 (01) : 77 - 86
  • [2] Calculation of Siphons and Minimal Siphons in Petri Nets Based on Semi-Tensor Product of Matrices
    Han, Xiaoguang
    Chen, Zengqiang
    Liu, Zhongxin
    Zhang, Qing
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (03): : 531 - 536
  • [3] State Feedback Based Output Tracking Control of Probabilistic Boolean Networks[J] . Haitao Li,Yuzhen Wang,Peilian Guo.Information Sciences . 2016
  • [4] l 1 -gain analysis and model reduction problem for Boolean control networks[J] . Min Meng,James Lam,Jun-e Feng,Xiuxian Li.Information Sciences . 2016
  • [5] Feedback control and output feedback control for the stabilisation of switched Boolean networks
    Li, Fangfei
    Yu, Zhaoxu
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (02) : 337 - 342
  • [6] Set stability and set stabilization of Boolean control networks based on invariant subsets[J] . Yuqian Guo,Pan Wang,Weihua Gui,Chunhua Yang.Automatica . 2015
  • [7] Output feedback stabilization of Boolean control networks[J] . Nicoletta Bof,Ettore Fornasini,Maria Elena Valcher.Automatica . 2015
  • [8] Verification analysis of self-verifying automata via semi-tensor product of matrices[J] . Yong-yi YAN,Zeng-qiang CHEN,Zhong-xin LIU.The Journal of China Universities of Posts and Telecommunications . 2014 (4)
  • [9] Nondeterministic fuzzy automata[J] . Yongzhi Cao,Yoshinori Ezawa.Information Sciences . 2012
  • [10] Matrix expression and reachability analysis of finite automata
    Xu X.
    Hong Y.
    [J]. Journal of Control Theory and Applications, 2012, 10 (2): : 210 - 215