The integration of artificial intelligence models to augment imaging modalities in pancreatic cancer

被引:1
作者
Wang Xianze [1 ]
Yuan Chung Wen [2 ]
Correa Elon [3 ]
Zhu Yi [4 ]
Issa Eyad [2 ]
Dennison Ashley R
机构
[1] Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
[2] Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester
[3] School of Computing, Science and Engineering, University of Salford, Manchester
[4] Language Technology Lab, University of Cambridge, Cambridge, UK
关键词
Artificial intelligence; Deep learning; Imaging modality; Machine learning; Pancreatic ductal adenocarcinoma;
D O I
暂无
中图分类号
R735.9 [胰腺肿瘤];
学科分类号
100214 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a limited number of effective treatments. Using emerging technologies such as artificial intelligence (AI) to facilitate the earlier diagnosis and decision-making process represents one of the most promising areas for investigation. The integration of AI models to augment imaging modalities in PDAC has made great progression in the past 5 years, especially in organ segmentation, AI-aided diagnosis, and radiomics based individualized medicine. In this article, we review the developments of AI in the field of PDAC and the present clinical position. We also examine the barriers to future development and more widespread application which will require increased familiarity of the underlying technology among clinicians to promote the necessary enthusiasm and collaboration with computer professionals.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 35 条
[1]   Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial [J].
Versteijne, Eva ;
Suker, Mustafa ;
Groothuis, Karin ;
Akkermans-Vogelaar, Janine M. ;
Besselink, Marc G. ;
Bonsing, Bert A. ;
Buijsen, Jeroen ;
Busch, Olivier R. ;
Creemers, Geert-Jan M. ;
van Dam, Ronald M. ;
Eskens, Ferry A. L. M. ;
Festen, Sebastiaan ;
de Groot, Jan Willem B. ;
Koerkamp, Bas Groot ;
de Hingh, Ignace H. ;
Homs, Marjolein Y., V ;
van Hooft, Jeanin E. ;
Kerver, Emile D. ;
Luelmo, Saskia A. C. ;
Neelis, Karen J. ;
Nuyttens, Joost ;
Paardekooper, Gabriel M. R. M. ;
Patijn, Gijs A. ;
van der Sangen, Maurice J. C. ;
de Vos-Geelen, Judith ;
Wilmink, Johanna W. ;
Zwinderman, Aeilko H. ;
Punt, Cornelis J. ;
van Eijck, Casper H. ;
van Tienhoven, Geertjan .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (16) :1763-+
[2]  
Technical and Clinical Factors Affecting Success Rate of a Deep Learning Method for Pancreas Segmentation on CT.[J].Mohammad Hadi Bagheri;Holger Roth;William Kovacs;Jianhua Yao;Faraz Farhadi;Xiaobai Li;Ronald M. Summers.Academic Radiology.2020, 5
[3]  
Deep pancreas segmentation with uncertain regions of shadowed sets.[J].Haiyan Zheng;Yufei Chen;Xiaodong Yue;Chao Ma;Xianhui Liu;Panpan Yang;Jianping Lu.Magnetic Resonance Imaging.2020, 缃┖
[4]  
Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks.[J].Ying Liang;Diane Schott;Ying Zhang;Zhiwu Wang;Haidy Nasief;Eric Paulson;William Hall;Paul Knechtges;Beth Erickson;X. Allen Li.Radiotherapy and Oncology.2020, 缃┖
[5]  
Advances on pancreas segmentation: a review.[J].Xu Yao;Yuqing Song;Zhe Liu.Multimedia Tools and Applications: An International Journal.2020, 3–4
[6]  
Interactive 3D U.[J].T G W Boers;Y Hu;E Gibson;D C Barratt;E Bonmati;J Krdzalic;F van der Heijden;J J Hermans;H J Huisman.Physics in Medicine & Biology.2020, 6
[7]   The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: A proof-of-principle study [J].
Kambakamba, Patryk ;
Mannil, Manoj ;
Herrera, Paola E. ;
Mueller, Philip C. ;
Kuemmerli, Christoph ;
Linecker, Michael ;
von Spiczak, Jochen ;
Huellner, Martin W. ;
Raptis, Dimitri A. ;
Petrowsky, Henrik ;
Clavien, Pierre-Alain ;
Alkadhi, Hatem .
SURGERY, 2020, 167 (02) :448-454
[8]  
Radiomics in stratification of pancreatic cystic lesions: Machine learning in action.[J].Vipin Dalal;Joseph Carmicheal;Amaninder Dhaliwal;Maneesh Jain;Sukhwinder Kaur;Surinder K. Batra.Cancer Letters.2020,
[9]   Pancreatic Ductal Adenocarcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis For Prediction Of Histopathological Grade [J].
Qiu, Wenli ;
Duan, Na ;
Chen, Xiao ;
Ren, Shuai ;
Zhang, Yifen ;
Wang, Zhongqiu ;
Chen, Rong .
CANCER MANAGEMENT AND RESEARCH, 2019, 11 :9253-9264
[10]   Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body [J].
Pan, Chenchen ;
Schoppe, Oliver ;
Parra-Damas, Arnaldo ;
Cai, Ruiyao ;
Todorov, Mihail Ivilinov ;
Gondi, Gabor ;
von Neubeck, Bettina ;
Boeguercue-Seidel, Nuray ;
Seidel, Sascha ;
Sleiman, Katia ;
Veltkamp, Christian ;
Foerstera, Benjamin ;
Mai, Hongcheng ;
Rong, Zhouyi ;
Trompak, Omelyan ;
Ghasemigharagoz, Alireza ;
Reimer, Madita Alice ;
Cuesta, Angel M. ;
Coronel, Javier ;
Jeremias, Irmela ;
Saur, Dieter ;
Acker-Palmer, Amparo ;
Acker, Till ;
Garvalov, Boyan K. ;
Menze, Bjoern ;
Zeidler, Reinhard ;
Ertuerk, Ali .
CELL, 2019, 179 (07) :1661-+