Effects of Elevated CO2 on Growth, Carbon Assimilation, Photosynthate Accumulation and Related Enzymes in Rice Leaves during Sink-Source Transition

被引:2
|
作者
Jun-Ying Li1
2Yunnan Tobacco Research Institute
机构
基金
中国国家自然科学基金;
关键词
elevated CO2; photosynthate; photosynthesis; rice; sink-source transition; sucrose metabolism;
D O I
暂无
中图分类号
Q945 [植物生理学];
学科分类号
0903 ;
摘要
To study the effects of growing rice (Oryza sativa L.) leaves under the treatment of the short-term elevated CO2 during the period of sink-source transition, several physiological processes such as dynamic changes in photosynthesis, photosynthate accumulation, enzyme activities (sucrose phosphate synthase (SPS), and sucrose synthase (SS)), and their specific gene (sps1 and RSus1) expressions in both mature and developing leaf were measured. Rice seedlings with fully expanded sixth leaf (marked as the source leaf, L6) were kept in elevated (700 μmol/mol) and ambient (350 mol/L) CO2 until the 7th leaf (marked as the sink leaf, L7) fully expanded. The results demonstrated that elevated CO2 significantly increased the rate of leaf elongation and biomass accumulation of L7 during the treatment without affecting the growth of L6. However, in both developing and mature leaves, net photosynthetic assimilation rate (A), all kinds of photosynthate contents such as starch, sucrose and hexose, activities of SPS and SS and transcript levels of sps1 and RSus1 were significantly increased under elevated CO2 condition. Results suggested that the elevated CO2 had facilitated photosynthate assimilation, and increased photosynthate supplies from the source leaf to the sink leaf, which accelerated the growth and sink-source transition in new developing sink leaves. The mechanisms of SPS regulation by the elevated CO2 was also discussed.
引用
收藏
页码:723 / 732
页数:10
相关论文
共 34 条
  • [1] Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition
    Li, Jun-Ying
    Liu, Xing-Hua
    Cai, Qing-Sheng
    Gu, Hui
    Zhang, Shan-Shan
    Wu, Yan-Yan
    Wang, Chun-Jiao
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2008, 50 (06) : 723 - 732
  • [2] Carbon partitioning into sorbitol, sucrose, and starch in source and sink apple leaves as affected by elevated CO2
    Wang, Z
    Pan, Q
    Quebedeaux, B
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1999, 41 (01) : 39 - 46
  • [3] Effects of elevated CO2 on hydraulic performance and carbon assimilation of Schefflera arboricola
    Ng, Charles Wang Wai
    To, Justin Chun Ting
    Lau, Sze Yu
    Liao, Jia Xin
    Bordoloi, Sanandam
    JOURNAL OF SOILS AND SEDIMENTS, 2023, 23 (03) : 1099 - 1113
  • [4] Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature
    Zhao, Hongxia
    Li, Yongping
    Zhang, Xiaolu
    Korpelainen, Helena
    Li, Chunyang
    TREE PHYSIOLOGY, 2012, 32 (11) : 1325 - 1338
  • [5] Effects of elevated CO2 concentration and warming on growth and yield of rice
    Morokuma, M
    Yajima, M
    Yonemura, S
    JAPANESE JOURNAL OF CROP SCIENCE, 1996, 65 (02) : 222 - 228
  • [6] Effects of elevated CO2 concentration and high temperature on growth and yield of rice
    Kim, HY
    Horie, T
    Nakagawa, H
    Wada, K
    JAPANESE JOURNAL OF CROP SCIENCE, 1996, 65 (04) : 634 - 643
  • [7] Alterations in Source-Sink Relations Affect Rice Yield Response to Elevated CO2: A Free-Air CO2 Enrichment Study
    Gao, Bo
    Hu, Shaowu
    Jing, Liquan
    Niu, Xichao
    Wang, Yunxia
    Zhu, Jianguo
    Wang, Yulong
    Yang, Lianxin
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [8] Mapping of QTLs for source and sink associated traits under elevated CO2 in rice (Oryza sativa L.)
    Dai, Li-Ping
    Lu, Xue-Li
    Zou, Wei-Wei
    Wang, Chang-Jian
    Shen, Lan
    Hu, Jiang
    Zhang, Guang-Heng
    Ren, De-Yong
    Chen, Guang
    Zhang, Qiang
    Xue, Da-Wei
    Dong, Guo-Jun
    Gao, Zhen-Yu
    Guo, Long-Biao
    Zhu, Li
    Mou, Tong-Min
    Qian, Qian
    Zeng, Da-Li
    PLANT GROWTH REGULATION, 2020, 90 (02) : 359 - 367
  • [9] Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.)
    Cheng, Weiguo
    Sakai, Hidemitsu
    Yagi, Kazuyuki
    Hasegawa, Toshihiro
    AGRICULTURAL AND FOREST METEOROLOGY, 2010, 150 (09) : 1174 - 1181
  • [10] Mapping of QTLs for source and sink associated traits under elevated CO2 in rice (Oryza sativa L.)
    Li-Ping Dai
    Xue-Li Lu
    Wei-Wei Zou
    Chang-Jian Wang
    Lan Shen
    Jiang Hu
    Guang-Heng Zhang
    De-Yong Ren
    Guang Chen
    Qiang Zhang
    Da-Wei Xue
    Guo-Jun Dong
    Zhen-Yu Gao
    Long-Biao Guo
    Li Zhu
    Tong-Min Mou
    Qian Qian
    Da-Li Zeng
    Plant Growth Regulation, 2020, 90 : 359 - 367