Fundamental solutions for plane problem of piezoelectric materials

被引:0
|
作者
丁皓江
王国庆
陈伟球
机构
[1] China
[2] Department of Civil Engineering
[3] Zhejiang University
[4] Hangzhou 310027
基金
中国国家自然科学基金;
关键词
piezoelectric materials; plane problem; potential theory; fundamental solution;
D O I
暂无
中图分类号
TM24 [导电材料及其制品];
学科分类号
0805 ; 080502 ; 080801 ;
摘要
Based on the basic equations of two-dimensional, transversely isotropic, piezoelectric elasticity, a group of general solutions for body force problem is obtained. And by utilizing this group of general solutions and employing the body potential theory and the integral method, the closed-form solutions of displacements and electric potential for an infinite piezoelectric plane loaded by point forces and point charge are acquired. Therefore, the fundamental solutions, which are very important and useful in the boundary element method (BEM), are presented.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [21] Hybrid fundamental-solution-based FEM for piezoelectric materials
    Changyong Cao
    Qing-Hua Qin
    Aibing Yu
    Computational Mechanics, 2012, 50 : 397 - 412
  • [22] Hybrid fundamental-solution-based FEM for piezoelectric materials
    Cao, Changyong
    Qin, Qing-Hua
    Yu, Aibing
    COMPUTATIONAL MECHANICS, 2012, 50 (04) : 397 - 412
  • [23] Fundamental solutions and frictionless contact problem in a semi-infinite space of 2D hexagonal piezoelectric QCs
    Li, Caiqi
    Zhou, Yue-Ting
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (05):
  • [24] Surface effect on the contact problem of a piezoelectric half-plane
    Song, Hong-Xia
    Ke, Liao-Liang
    Su, Jie
    Yang, Jie
    Kitipornchai, Sritawat
    Wang, Yue-Sheng
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 185 : 380 - 393
  • [25] Fundamental solutions in the theory of elasticity for triple porosity materials
    Merab Svanadze
    Meccanica, 2016, 51 : 1825 - 1837
  • [26] Fundamental solutions in the theory of elasticity for triple porosity materials
    Svanadze, Merab
    MECCANICA, 2016, 51 (08) : 1825 - 1837
  • [27] Generalized plane problem of a cracked piezoelectric layer bonded to dissimilar layers
    B. L. Wang
    N. Noda
    Acta Mechanica, 2002, 153 : 79 - 88
  • [28] General solution of plane problem of piezoelectric media expressed by "harmonic functions"
    Haojiang D.
    Guoqing W.
    Weiqiu C.
    Applied Mathematics and Mechanics, 1997, 18 (8) : 757 - 764
  • [29] General solution of plane problem of piezoelectric media expressed by "harmonic functions"
    Ding, HJ
    Wang, GQ
    Chen, WQ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (08) : 757 - 764
  • [30] Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material
    Guo, Jun-Hong
    Lu, Zi-Xing
    Han, Hai-Tao
    Yang, Zhenyu
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (21) : 3799 - 3809