Approximate analytic solutions for a generalized Hirota—Satsuma coupled KdV equation and a coupled mKdV equation

被引:0
作者
赵国忠 [1 ]
蔚喜军 [2 ]
徐云 [2 ]
朱江 [3 ]
吴迪 [1 ]
机构
[1] Graduate School of China Academy of Engineering Physics
[2] Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics
[3] Laboratorio Nacional de Computacao Cientifica,MCT,Avenida Getulio Vargas 333,25651-075 Petropolis,RJ,Brazil
基金
中国国家自然科学基金;
关键词
approximate analytic solutions; generalized Hirota-Satsuma coupled KdV equation; coupled mKdV equation; variational iteration method;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries(KdV) equation and a coupled modified Korteweg-de Vries(mKdV) equation. This method provides a sequence of functions which converges to the exact solution of the problem and is based on the use of the Lagrange multiplier for the identification of optimal values of parameters in a functional.Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 39 条
  • [1] Fan E G. Physics Letters A . 2001
  • [2] Ma S H,Fang J P,Zheng C L. Chin. Phys. B . 2008
  • [3] Parkes E J,Duffy B R. Goraput.Phys.Goraraun . 1996
  • [4] Satsuma J,Hirota R. Journal of the Physical Society of Japan . 1982
  • [5] Mo J Q,LinWT. ActaPhys.Sin . 2008
  • [6] Li B Q,Ma Y L. Acta Physiologica Sinica . 2009
  • [7] Mo J Q,Zhang W J,He M. Acta Physica Sinica . 2007
  • [8] Z. Feng.Traveling solitary wave solutions to evolution equations with nonlinear terms of any order. Chaos Solitons Fractals . 2003
  • [9] DD Ganji,M Rafei.Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method. Physics Letters A . 2006
  • [10] Mo J Q,Lin W T. Acta Physiologica Sinica . 2008