Estimation of Critical Temperature of Thermal Explosion for Trinitromethyl Explosives by Non-isothermal DSC

被引:0
|
作者
ZHANG Hai1
2. Xi’an Modern Chemistry Research Institute
3. College of Chemical Engineering
4. Institute of System and Information Science
机构
基金
中国国家自然科学基金;
关键词
Trinitromethyl explosive; Critical temperature; Thermal explosion; Non-isothermal DSC;
D O I
暂无
中图分类号
TQ560.1 [基础理论];
学科分类号
0817 ;
摘要
Two general expressions and their six derived formulae for estimating the critical temperature(Tb) of thermal explosion for energetic materials(EMs) were derived from the Semenov’s thermal explosion theory and eight non-isothermal kinetic equations via reasonable hypothesis. We can easily obtain the values of the initial temperature(T0i) at which DSC curve deviates from the baseline of the non-isothermal DSC curve of EMs, the onset temperature(Tei), the exothermic decomposition reaction kinetic parameters and the values of T00 and Te0 from the equation T0i or ei=T00 or e0+α1βi+α2βi2+···+αL–2βiL–2, i=1, 2, ···, L and then calculate the values of Tb by means of the six derived formulae. The results obtained with the six derived calculating methods for six trinitromethyl explosives: bis(2,2,2- trinitroethyl-N-nitro) ethylene diamine(BTNEDA), 2,2,2-trinitroethyl-4,4,4-trinitrobutyrate(TNETB), bis(2,2,2- trinitroethyl) formal(BNTF), bis(2,2,2-trinitroethyl-nitramine)(BTNNA), 2,2,2-trinitroethyl-2,2,2-trinitroethyl-N- nitroamino acetate(TNTNNA) and tetrakis [2,2,2-trinitroethyl] orthoester(TTNOE) agree well with each other.
引用
收藏
页码:436 / 442
页数:7
相关论文
共 36 条
  • [21] A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC
    Ahn, WonSool
    Eom, Seong-Ho
    ELASTOMERS AND COMPOSITES, 2015, 50 (02): : 92 - 97
  • [22] Non-Isothermal Solid Phase Diffusion in Activated Powder Mixtures. Thermal Regimes and Critical Conditions
    Filimonov, Valeriy Y.
    Koshelev, Konstantin B.
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2019, 44 (04) : 472 - 483
  • [23] Method to Determine the Kinetic Parameters of the Autocatalytic Decomposition Reaction and Critical Rate of Temperature Rise of Thermal Explosion of Energetic Materials from DSC Curves
    Hu Rong-Zu
    Zhao Feng-Qi
    Gao Hong-Xu
    Yao Er-Gang
    Zhang Hai
    Wang Yao
    Chang Xiang-Yu
    Zhao Hong-An
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (08) : 1623 - 1631
  • [24] The critical condition and stability of exothermic chemical reaction in a non-isothermal reactor
    Luo, KM
    Lu, KT
    Hu, KH
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 1997, 10 (03) : 141 - 150
  • [25] Estimation of the kinetic parameters and the critical rate of temperature rise in the thermal explosion from the exothermic autocatalytic decomposition of 3,4-bis(4′-nitrofurazan-3′-yl)-2-oxofurazan (BNFOF) using non-isothermal differential scanning calorimetry
    Zhao, FQ
    Guo, PJ
    Hu, RZ
    Zhang, H
    Zia, ZM
    Gao, HX
    Chen, P
    Luo, Y
    Zhang, ZZ
    Zhou, YS
    Zhao, HA
    Gao, SL
    Shi, QZ
    Lu, GE
    Jiang, JY
    CHINESE JOURNAL OF CHEMISTRY, 2006, 24 (05) : 631 - 636
  • [26] Cure Kinetics of a Bisphenol-A Type Vinyl-Ester Resin Using Non-Isothermal DSC
    Ahn, WonSool
    ELASTOMERS AND COMPOSITES, 2018, 53 (01): : 1 - 5
  • [27] Study on the Click Chemical Curing Reaction Kinetics of Polybutadiene Triazole System by Non-isothermal DSC Method
    Wang R.
    Li X.-M.
    Wang X.-Q.
    Luo Y.-J.
    Huozhayao Xuebao/Chinese Journal of Explosives and Propellants, 2019, 42 (04): : 328 - 334
  • [28] Critical temperature calculation of butadiene peroxide by thermal explosion theory
    Liu, YX
    Zhou, B
    Theory and Practice of Energetic Materials, Vol 6, 2005, : 1139 - 1142
  • [30] Cure kinetics of DGEBA with hyperbrancbed poly (3-hydroxyphenyl) phosphate as curing agent studied by non-isothermal DSC
    Yao, L
    Deng, J
    Qu, BJ
    Shi, WF
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2006, 22 (01) : 118 - 122