A survey of unmanned aerial vehicle flight data anomaly detection:Technologies,applications,and future directions

被引:0
作者
YANG Lei [1 ]
LI ShaoBo [1 ,2 ]
LI ChuanJiang [1 ]
ZHANG AnSi [1 ,2 ]
ZHANG XuDong [1 ]
机构
[1] School of Mechanical Engineering,Guizhou University
[2] State Key Laboratory of Public Big Data,Guizhou University
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
V279 [无人驾驶飞机];
学科分类号
1111 ;
摘要
Flight data anomaly detection plays an imperative role in the safety and maintenance of unmanned aerial vehicles(UAVs). It has attracted extensive attention from researchers. However, the problems related to the difficulty in obtaining abnormal data, low model accuracy, and high calculation cost have led to severe challenges with respect to its practical applications. Hence, in this study, firstly, several UAV flight data simulation softwares are presented based on a brief presentation of the basic concepts of anomalies, the contents of UAV flight data, and the public datasets for flight data anomaly detection. Then, anomaly detection technologies for UAV flight data are comprehensively reviewed, including knowledge-based, model-based, and data-driven methods. Next, UAV flight data anomaly detection applications are briefly described and analyzed. Finally, the future trends and directions of UAV flight data anomaly detection are summarized and prospected, which aims to provide references for the following research.
引用
收藏
页码:901 / 919
页数:19
相关论文
共 76 条
  • [1] Task-wise attention guided part complementary learning for few-shot image classification[J]. Gong CHENG,Ruimin LI,Chunbo LANG,Junwei HAN.Science China(Information Sciences). 2021(02)
  • [2] Smart additive manufacturing: Current artificial intelligenceenabled methods and future perspectives[J]. WANG Yuan Bin,ZHENG Pai,PENG Tao,YANG Hua Yong,ZOU Jun.Science China(Technological Sciences). 2020(09)
  • [3] 四旋翼无人机姿态异常感知数据生成方法
    刘连胜
    张哲彦
    王志亮
    彭宇
    [J]. 仪器仪表学报, 2020, 41 (04) : 58 - 67
  • [4] A general end-to-end diagnosis framework for manufacturing systems[J]. Ye Yuan,Guijun Ma,Cheng Cheng,Beitong Zhou,Huan Zhao,Hai-Tao Zhang,Han Ding.National Science Review. 2020(02)
  • [5] 集成LSTM的航天器遥测数据异常检测方法
    董静怡
    庞景月
    彭宇
    刘大同
    [J]. 仪器仪表学报, 2019, 40 (07) : 22 - 29
  • [6] 无人机飞控系统故障仿真及数据生成
    彭宇
    史书慧
    郭凯
    刘大同
    [J]. 仪器仪表学报, 2019, 40 (07) : 13 - 21
  • [7] 飞行数据异常检测技术综述
    彭宇
    何永福
    王少军
    刘大同
    刘连胜
    [J]. 仪器仪表学报, 2019, 40 (03) : 1 - 13
  • [8] Semi-Supervised Learning Based Big Data-Driven Anomaly Detection in Mobile Wireless Networks
    Bilal Hussain
    Qinghe Du
    Pinyi Ren
    [J]. 中国通信, 2018, 15 (04) : 41 - 57
  • [9] 航天器遥测数据异常检测综述
    彭喜元
    庞景月
    彭宇
    刘大同
    [J]. 仪器仪表学报, 2016, 37 (09) : 1929 - 1945
  • [10] 基于过采样投影近似基追踪的无人机异常检测
    何永福
    王少军
    王文娟
    彭宇
    刘大同
    [J]. 仪器仪表学报, 2016, 37 (07) : 1468 - 1476