Nonabelian Jacobian of smooth projective surfaces-a survey

被引:0
|
作者
REIDER Igor [1 ]
机构
[1] Département de Mathématiques,l’Université d’Angers,2 Boulevard Lavoisier,49045 Angers Cedex 01,France
关键词
Jacobian; Hilbert scheme; vector bundle;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
070104 ;
摘要
The nonabelian Jacobian J(X;L,d) of a smooth projective surface X is inspired by the classical theory of Jacobian of curves.It is built as a natural scheme interpolating between the Hilbert scheme X [d] of subschemes of length d of X and the stack M X(2,L,d) of torsion free sheaves of rank 2 on X having the determinant OX(L) and the second Chern class(= number) d.It relates to such influential ideas as variations of Hodge structures,period maps,nonabelian Hodge theory,Homological mirror symmetry,perverse sheaves,geometric Langlands program.These relations manifest themselves by the appearance of the following structures on J(X;L,d):1) a sheaf of reductive Lie algebras;2)(singular) Fano toric varieties whose hyperplane sections are(singular) Calabi-Yau varieties;3) trivalent graphs.This is an expository paper giving an account of most of the main properties of J(X;L,d) uncovered in Reider 2006 and ArXiv:1103.4794v1.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 15 条