POSITIVE SOLUTIONS TO A SEMIPOSITONE SINGULAR NEUMANN BOUNDARY VALUE PROBLEM

被引:0
作者
Jinjun Fan
机构
关键词
Neumann boundary value problem; Krasnaselskii’s fixed point theo-rem; semipositone; singular; positive solutions;
D O I
暂无
中图分类号
O175.8 [边值问题];
学科分类号
070104 ;
摘要
A semipositone singular boundary value problem (BVP for short) is discussed in this paper. By Krasnaselskii’s fixed point theorem in cones,we derive suffcient conditions,which guarantee that the semipositone BVP has at least one positive solution.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 50 条
[31]   Existence of positive solutions of superlinear second-order Neumann boundary value problem [J].
Li Zhilong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :3216-3221
[32]   Positive solutions to a system of semipositone fractional boundary value problems [J].
Luca, Rodica ;
Tudorache, Alexandru .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[33]   Positive solutions for third order semipositone boundary value problems [J].
Graef, John R. ;
Kong, Lingju .
APPLIED MATHEMATICS LETTERS, 2009, 22 (08) :1154-1160
[34]   Positive solutions to singular semipositone m-point n-order boundary value problems [J].
Su H. ;
Wang X. .
Journal of Applied Mathematics and Computing, 2011, 36 (1-2) :187-200
[35]   Positive solutions of superlinear semipositone nonlinear boundary value problems [J].
Li, Hongyu ;
Sun, Jingxian .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) :2806-2815
[36]   Positive solutions to a system of semipositone fractional boundary value problems [J].
Rodica Luca ;
Alexandru Tudorache .
Advances in Difference Equations, 2014
[37]   Existence of solutions for a semipositone fractional boundary value pantograph problem [J].
Boulares, Hamid ;
Alqudah, Manar A. ;
Abdeljawad, Thabet .
AIMS MATHEMATICS, 2022, 7 (10) :19510-19519
[38]   POSITIVE SOLUTIONS OF SINGULAR THREE-POINT BOUNDARY VALUE PROBLEM [J].
Wang Weibing Luo Zhiguo (Dept. of Math. .
Annals of Differential Equations, 2007, (01) :72-77
[39]   Existence of positive solutions to a singular second order boundary value problem [J].
Kelevedjiev, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (08) :1107-1118
[40]   POSITIVE SOLUTIONS OF A SECOND-ORDER NEUMANN BOUNDARY VALUE PROBLEM WITH A PARAMETER [J].
Zhang, Yang-Wen ;
Li, Hong-Xu .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) :244-253