Weakly stable constant mean curvature hypersurfaces

被引:0
作者
FU Hai-ping1
机构
基金
中国国家自然科学基金;
关键词
constant mean curvature; weakly stable hypersurface; ends;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Let Mn be an n-dimensional complete noncompact oriented weakly stable constant mean curvature hypersurface in an (n+1)-dimensional Riemannian manifold Nn+1 whose (n-1)th Ricci curvature satisfying RicN(n-1) ≥ (n-1)c. Denote by H and φ the mean curvature and the trace-free second fundamental form of M respectively. If |φ|2 -(n-2) n(n-1)|H||φ| + n(2n-1)(H2 + c) ≥ 0, then M does not admit nonconstant bounded harmonic functions with finite Dirichlet integral. In particular, if N has bounded geometry and c + H2 > 0, then M must have only one end.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 11 条
[1]   The structure of weakly stable constant mean curvature hypersurfaces [J].
Cheng, Xu ;
Cheung, Leung-Fu ;
Zhou, Detang .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (01) :101-121
[2]   On constant mean curvature hypersurfaces with finite index [J].
Cheng, X .
ARCHIV DER MATHEMATIK, 2006, 86 (04) :365-374
[3]   Minimal hypersurfaces with finite index [J].
Li, P ;
Wang, JP .
MATHEMATICAL RESEARCH LETTERS, 2002, 9 (01) :95-103
[4]   Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space [J].
Cheung, LF ;
Leung, PF .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (03) :525-530
[5]  
The Topoligical Sphere Theorem for Complete Submanifolds[J] . KATSUHIRO SHIOHAMA,HONGWEI XU.Compositio Mathematica . 1997 (2)
[6]  
The structure of stable minimal hypersurfaces in $I\!\!R^{n+1}$[J] . Huai-Dong Cao,Ying Shen,Shunhui Zhu.Mathematical Research Letters . 1997 (5)
[7]   HARMONIC-FUNCTIONS AND THE STRUCTURE OF COMPLETE MANIFOLDS [J].
LI, P ;
TAM, LF .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1992, 35 (02) :359-383
[8]  
On complete minimal surfaces with finite Morse index in three manifolds[J] . D. Fischer-Colbrie.Inventiones Mathematicae . 1985 (1)
[9]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[10]   STABLE COMPLETE MINIMAL SURFACES IN R3 ARE PLANES [J].
DOCARMO, M ;
PENG, CK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :903-906