Bifurcation Analysis of the Multiple Flips Homoclinic Orbit

被引:0
|
作者
Tiansi ZHANG [1 ]
Deming ZHU [2 ]
机构
[1] College of Science, University of Shanghai for Science and Technology
[2] Department of Mathematics, East China Normal University
基金
中国国家自然科学基金;
关键词
Orbit flip; Inclination flips; Homoclinic orbit; Resonance;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
A high-codimension homoclinic bifurcation is considered with one orbit flip and two inclination flips accompanied by resonant principal eigenvalues. A local active coordinate system in a small neighborhood of homoclinic orbit is introduced. By analysis of the bifurcation equation, the authors obtain the conditions when the original flip homoclinic orbit is kept or broken. The existence and the existence regions of several double periodic orbits and one triple periodic orbit bifurcations are proved. Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately.
引用
收藏
页码:91 / 104
页数:14
相关论文
共 50 条
  • [21] Homoclinic bifurcation with nonhyperbolic equilibria
    Liu, Xingbo
    Fu, Xianlong
    Zhu, Deming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) : 2931 - 2939
  • [22] A HOMOCLINIC ORBIT FOR LAGRANGIAN SYSTEMS
    WU Shaoping (Department of Mathematics
    Systems Science and Mathematical Sciences, 1995, (01) : 75 - 81
  • [23] Homoclinic flip bifurcation with a nonhyperbolic equilibrium
    Xingbo Liu
    Lina Shi
    Dongmei Zhang
    Nonlinear Dynamics, 2012, 69 : 655 - 665
  • [24] Homoclinic flip bifurcation with a nonhyperbolic equilibrium
    Liu, Xingbo
    Shi, Lina
    Zhang, Dongmei
    NONLINEAR DYNAMICS, 2012, 69 (1-2) : 655 - 665
  • [25] A numerical bifurcation function for homoclinic orbits
    Ashwin, P
    Mei, Z
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) : 2055 - 2069
  • [26] Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips
    Shui, SL
    Zhu, DM
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (02): : 248 - 260
  • [27] Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips
    SHUI Shuliang & ZHU Deming College of Mathematics and Physics
    Department of Mathematics
    Science China Mathematics, 2005, (02) : 248 - 260
  • [28] Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips
    Shuliang Shui
    Deming Zhu
    Science in China Series A: Mathematics, 2005, 48 : 248 - 260
  • [29] Homotopy analysis method for homoclinic orbit of a buckled thin plate system
    L. H. Qian
    Y. H. Qian
    S. M. Chen
    Acta Mechanica, 2014, 225 : 373 - 381
  • [30] The homoclinic orbit solution for functional equation
    Liu, SD
    Fu, ZT
    Liu, SK
    Ren, K
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (05) : 553 - 554