Exact Tail Asymptotics for a Discrete-time Preemptive Priority Queue

被引:1
|
作者
Yang SONG [1 ]
Zai-ming LIU [1 ]
Hong-shuai DAI [2 ]
机构
[1] School of Mathematics and Statistics, Central South University
[2] School of Statistics, Shandong University of Finance and Economics
基金
中国国家自然科学基金;
关键词
discrete-time queue; stationary distribution; kernel method; exact tail asymptotics;
D O I
暂无
中图分类号
O226 [排队论(随机服务系统)];
学科分类号
070105 ; 1201 ;
摘要
In this paper, we consider a discrete-time preemptive priority queue with different service completion probabilities for two classes of customers, one with high-priority and the other with low-priority. This model corresponds to the classical preemptive priority queueing system with two classes of independent Poisson customers and a single exponential server. Due to the possibility of customers’ arriving and departing at the same time in a discrete-time queue, the model considered in this paper is more complicated than the continuoustime model. In this model, we focus on the characterization of the exact tail asymptotics for the joint stationary distribution of the queue length of the two types of customers, for the two boundary distributions and for the two marginal distributions, respectively. By using generating functions and the kernel method, we get the exact tail asymptotic properties along the direction of the low-priority queue, as well as along the direction of the high-priority queue.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [1] Exact tail asymptotics for a discrete-time preemptive priority queue
    Yang Song
    Zai-ming Liu
    Hong-shuai Dai
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 43 - 58
  • [2] Exact Tail Asymptotics for a Discrete-time Preemptive Priority Queue
    Song, Yang
    Liu, Zai-ming
    Dai, Hong-shuai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (01): : 43 - 58
  • [3] Exact tail asymptotics in a priority queue—characterizations of the preemptive model
    Hui Li
    Yiqiang Q. Zhao
    Queueing Systems, 2009, 63
  • [4] Exact tail asymptotics in a priority queue-characterizations of the preemptive model
    Li, Hui
    Zhao, Yiqiang Q.
    QUEUEING SYSTEMS, 2009, 63 (1-4) : 355 - 381
  • [5] Exact tail asymptotics in a priority queue—characterizations of the non-preemptive model
    Hui Li
    Yiqiang Q. Zhao
    Queueing Systems, 2011, 68 : 165 - 192
  • [6] The discrete-time preemptive repeat identical priority queue
    Walraevens, Joris
    Fiems, Dieter
    Bruneel, Herwig
    QUEUEING SYSTEMS, 2006, 53 (04) : 231 - 243
  • [7] The discrete-time preemptive repeat identical priority queue
    Joris Walraevens
    Dieter Fiems
    Herwig Bruneel
    Queueing Systems, 2006, 53 : 231 - 243
  • [8] Exact tail asymptotics in a priority queue-characterizations of the non-preemptive model
    Li, Hui
    Zhao, Yiqiang Q.
    QUEUEING SYSTEMS, 2011, 68 (02) : 165 - 192
  • [9] Discrete-time GeoX/G/1 queue with preemptive resume priority
    Lee, Y
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (3-4) : 243 - 250
  • [10] Delay Analysis of a Discrete-Time Non-Preemptive Priority Queue with Priority Jumps
    Pandey, Deepak C.
    Pal, Arun K.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (01): : 1 - 12