Estimates on the eigenvalues of complex nonlocal Sturm-Liouville problems

被引:0
作者
SUN Fu [1 ,2 ]
LI Kun [3 ]
机构
[1] School of Statistics and Data Science, Qufu Normal University
[2] School of Mathematics and Statistics, Shandong University
[3] School of Mathematical Sciences, Qufu Normal University
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Sturm-Liouville problem; nonlocal potential; complex valued coefficient; non-real eigenvalue;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems. The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.
引用
收藏
页码:100 / 110
页数:11
相关论文
共 50 条
[41]   A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems [J].
Qi, Jiangang ;
Chen, Shaozhu .
JOURNAL OF SPECTRAL THEORY, 2014, 4 (01) :53-63
[42]   THE UPPER AND LOWER BOUNDS ON NON-REAL EIGENVALUES OF INDEFINITE STURM-LIOUVILLE PROBLEMS [J].
Qi, Jiangang ;
Xie, Bing ;
Chen, Shaozhu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) :547-559
[43]   Error estimate of eigenvalues of perturbed second-order discrete Sturm-Liouville problems [J].
Lv, Haiyan ;
Shi, Yuming .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :2389-2415
[44]   Bounds on the Non-real Eigenvalues of Nonlocal Indefinite Sturm–Liouville Problems with Coupled Boundary Conditions [J].
Fu Sun ;
Kun Li ;
Jinming Cai .
Complex Analysis and Operator Theory, 2022, 16
[45]   An efficient algorithm for computing the eigenvalues of conformable Sturm-Liouville problem [J].
Mirzaei, Hanif ;
Emami, Mahmood ;
Ghanbari, Kazem ;
Shahriari, Mohammad .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2024, 12 (03) :471-483
[46]   Approximations of Sturm-Liouville eigenvalues using Boundary Value Methods [J].
Ghelardoni, P .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (03) :311-325
[47]   Calculating the eigenvalues of the Sturm-Liouville problem with a fractal indefinite weight [J].
Vladimirov A.A. .
Computational Mathematics and Mathematical Physics, 2007, 47 (8) :1295-1300
[48]   EIGENVALUE ESTIMATES FOR A GENERALIZED STURM-LIOUVILLE PROBLEM. [J].
Kurtz, Larry A. ;
Foreman Jr., J.W. .
Industrial Mathematics, 1982, 32 (pt 1) :43-55
[49]   A FORTRAN SOFTWARE PACKAGE FOR STURM-LIOUVILLE PROBLEMS [J].
BAILEY, PB ;
GARBOW, BS ;
KAPER, HG ;
ZETTL, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :500-501
[50]   Sturm-Liouville problems with reducible boundary conditions [J].
Binding, Paul A. ;
Browne, Patrick J. ;
Watson, Bruce A. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 :593-608