Estimates on the eigenvalues of complex nonlocal Sturm-Liouville problems

被引:0
作者
SUN Fu [1 ,2 ]
LI Kun [3 ]
机构
[1] School of Statistics and Data Science, Qufu Normal University
[2] School of Mathematics and Statistics, Shandong University
[3] School of Mathematical Sciences, Qufu Normal University
关键词
Sturm-Liouville problem; nonlocal potential; complex valued coefficient; non-real eigenvalue;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems. The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.
引用
收藏
页码:100 / 110
页数:11
相关论文
共 50 条
[31]   Majorants for eigenvalues of Sturm-Liouville problems with potentials lying in balls of weighted spaces [J].
Vladimirov, A. A. .
SBORNIK MATHEMATICS, 2017, 208 (09) :1298-1311
[32]   Approximation of eigenvalues of Sturm-Liouville problems defined on a semi-infinite domain [J].
Mebirouk, AbdelMouemin ;
Bouheroum-Mentri, Sabria ;
Aceto, Lidia .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
[33]   A Hermite-Gauss method for the approximation of eigenvalues of regular Sturm-Liouville problems [J].
Asharabi, Rashad M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[34]   On the second-order Frechet derivatives of eigenvalues of Sturm-Liouville problems in potentials [J].
Guo, Shuyuan ;
Xu, Guixin ;
Zhang, Meirong .
ARCHIV DER MATHEMATIK, 2019, 113 (03) :301-312
[35]   ACCUMULATION OF COMPLEX EIGENVALUES OF AN INDEFINITE STURM-LIOUVILLE OPERATOR WITH A SHIFTED COULOMB POTENTIAL [J].
Levitin, Michael ;
Seri, Marcello .
OPERATORS AND MATRICES, 2016, 10 (01) :223-245
[36]   THE DEPENDENCE OF THE EIGENVALUES OF THE STURM-LIOUVILLE PROBLEM ON BOUNDARY CONDITIONS [J].
Harutyunyan, T. N. .
MATEMATICKI VESNIK, 2008, 60 (04) :285-294
[37]   A MODIFIED NUMEROV METHOD FOR HIGHER STURM-LIOUVILLE EIGENVALUES [J].
VANDENBERGHE, G ;
DEMEYER, H .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 37 (1-2) :63-77
[38]   Spectral corrections for Sturm-Liouville problems [J].
Ghelardoni, P ;
Gheri, G ;
Marletta, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) :443-459
[39]   The Schwarzian Approach in Sturm-Liouville Problems [J].
Vlahakis, Nektarios .
SYMMETRY-BASEL, 2024, 16 (06)
[40]   Trace Formula on Transmission Eigenvalues of the Sturm-Liouville Problem [J].
Yang, Chuan-Fu .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (8-9) :429-434