Global Inference Preserving Projection for Semi-supervised Discriminant Analysis

被引:0
|
作者
谷小婧 [1 ,2 ]
孙韶媛 [2 ]
方建安 [2 ]
机构
[1] Key Laboratory of Advanced Control and Optimization for Chemical Process,Ministry of Education,East China University of Science and Technology
[2] College of Information Science&Technology,Donghua University
关键词
semi-supervised learning; dimensionality reduction; manifold structure;
D O I
10.19884/j.1672-5220.2012.02.008
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
Semi-supervised dimensionality reduction is an important research area for data classification.A new linear dimensionality reduction approach,global inference preserving projection(GIPP),was proposed to perform classification task in semi-supervised case.GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples.It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the discriminant algorithm into a generalized eigenequation problem.Experimental results demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:144 / 147
页数:4
相关论文
共 50 条
  • [41] Semi-supervised Local Discriminant Embedding
    Huang, Chuan-Bo
    Jin, Zhong
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 6215 : 415 - 422
  • [42] Beyond the Graphs: Semi-parametric Semi-supervised Discriminant Analysis
    Wang, Fei
    Wang, Xin
    Li, Tao
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2113 - 2120
  • [43] Semi-supervised Linear Discriminant Clustering
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Lee, Chia-Hoang
    Gou, Fu-Sheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (07) : 989 - 1000
  • [44] Semi-supervised local Fisher discriminant analysis for dimensionality reduction
    Sugiyama, Masashi
    Ide, Tsuyoshi
    Nakajima, Shinichi
    Sese, Jun
    MACHINE LEARNING, 2010, 78 (1-2) : 35 - 61
  • [45] Fast algorithms for incremental and decremental semi-supervised discriminant analysis
    Pang, Wenrao
    Wu, Gang
    PATTERN RECOGNITION, 2022, 131
  • [46] Speech emotion recognition using semi-supervised discriminant analysis
    Zhao, L. (zhaoli@seu.edu.cn), 1600, Southeast University (30):
  • [47] LOCAL CORRELATION DISCRIMINANT ANALYSIS AND ITS SEMI-SUPERVISED EXTENSION
    Chen Caikou Shi Jun (Information Engineering College
    Journal of Electronics(China), 2011, 28 (03) : 289 - 296
  • [48] Face Recognition via Semi-Supervised Discriminant Local Analysis
    Ling, Goh Fan
    Han, Pang Ying
    Yee, Khor Ean
    Yin, Ooi Shih
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 292 - 297
  • [49] Semi-supervised orthogonal discriminant analysis via label propagation
    Nie, Feiping
    Xiang, Shiming
    Jia, Yangqing
    Zhang, Changshui
    PATTERN RECOGNITION, 2009, 42 (11) : 2615 - 2627
  • [50] Heteroscedastic Probabilistic Linear Discriminant Analysis with Semi-supervised Extension
    Zhang, Yu
    Yeung, Dit-Yan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 602 - +