ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS

被引:0
|
作者
Karl Kunisch [1 ]
机构
[1] Department of Mathematics,University of Graz
基金
中国国家自然科学基金;
关键词
Parameter estimation; Finite element approximation; Adaptive finite element methods; A posteriori error estimate;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
In this paper,we study adaptive finite element discretisation schemes for a class ofparameter estimation problem.We propose to use adaptive multi-meshes in developingefficient algorithms for the estimation problem.We derive equivalent a posteriori errorestimators for both the state and the control approximation,which particularly suit anadaptive multi-mesh finite element scheme.The error estimators are then implementedand tested with promising numerical results.
引用
收藏
页码:645 / 675
页数:31
相关论文
共 50 条
  • [1] Adaptive finite element approximation for a class of parameter estimation problems
    Chang, Yanzhen
    Yang, Danping
    Zhang, Zhijuan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 231 : 284 - 298
  • [2] ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS
    Kunisch, Karl
    Liu, Wenbin
    Chang, Yanzhen
    Yan, Ningning
    Li, Ruo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (05) : 645 - 675
  • [3] FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS
    CHANG Yanzhen
    YANG Danping
    Journal of Systems Science & Complexity, 2014, 27 (05) : 866 - 882
  • [4] Finite element approximation for a class of parameter estimation problems
    Chang Yanzhen
    Yang Danping
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (05) : 866 - 882
  • [5] Finite element approximation for a class of parameter estimation problems
    Yanzhen Chang
    Danping Yang
    Journal of Systems Science and Complexity, 2014, 27 : 866 - 882
  • [6] ADAPTIVE FINITE ELEMENT METHODS FOR PARAMETER ESTIMATION PROBLEMS IN LINEAR ELASTICITY
    Feng, Tao
    Gulliksson, Marten
    Liu, Wenbin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2009, 6 (01) : 17 - 32
  • [7] Adaptive finite element approximation of multiphysics problems
    Larson, Mats G.
    Bengzon, Fredrik
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (06): : 505 - 521
  • [8] Adaptive finite element approximation for distributed elliptic optimal control problems
    Li, R
    Liu, WB
    Ma, HP
    Tang, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) : 1321 - 1349
  • [9] A posteriori error estimation for finite element discretization of parameter identification problems
    Becker, R
    Vexler, B
    NUMERISCHE MATHEMATIK, 2004, 96 (03) : 435 - 459
  • [10] A posteriori error estimation for finite element discretization of parameter identification problems
    Roland Becker
    Boris Vexler
    Numerische Mathematik, 2004, 96 : 435 - 459