Magnetic Field Analysis of Interior Composite-Rotor Controllable-Flux Permanent Magnet Synchronous Machine

被引:0
作者
陈益广 [1 ]
潘巍 [1 ]
沈勇环 [1 ]
唐任远 [2 ]
机构
[1] School of Electrical Engineering and Automation, Tianjin University
[2] School of Electrical Engineering, Shenyang University of Technology
关键词
controllable-flux PMSM; memory motor; internal composite-rotor; finite element analysis;
D O I
暂无
中图分类号
TM351 [永磁电机];
学科分类号
080801 ;
摘要
Conventional permanent magnet synchronous machine (PMSM) has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets (PMs) are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current id, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.
引用
收藏
页码:330 / 334
页数:5
相关论文
共 2 条
[1]   宽调速可控磁通永磁同步电机磁路设计和有限元分析 [J].
陈益广 ;
王颖 ;
沈勇环 ;
唐任远 .
中国电机工程学报, 2005, (20) :157-161
[2]  
Pole-changing permanent-magnet machines. Ostovic V. IEEE Transactions on Industry Applications . 2002