Multi-task Joint Feature Selection for Multi-label Classification

被引:0
作者
HE Zhifen [1 ,2 ]
YANG Ming [1 ,2 ]
LIU Huidong [2 ]
机构
[1] School of Mathematical Sciences, Nanjing Normal University
[2] School of Computer Science and Technology, Nanjing Normal University
基金
中国国家自然科学基金;
关键词
Multi-label learning; Multi-task learning; Feature selection; Label correlations;
D O I
暂无
中图分类号
TP391.4 [模式识别与装置];
学科分类号
0811 ; 081101 ; 081104 ; 1405 ;
摘要
Multi-label learning deals with each instance which may be associated with a set of class labels simultaneously. We propose a novel multi-label classification approach named MFSM(Multi-task joint feature selection for multi-label classification). In MFSM, we compute the asymmetric label correlation matrix in the label space. The multi-label learning problem can be formulated as a joint optimization problem including two regularization terms,one aims to consider the label correlations and the other is used to select the similar sparse features shared among multiple different classification tasks(each for one label).Our model can be reformulated into an equivalent smooth convex optimization problem which can be solved by the Nesterov’s method. The experiments on sixteen benchmark multi-label data sets demonstrate that our method outperforms the state-of-the-art multi-label learning algorithms.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 14 条
  • [1] 基于共享背景主题的Labeled LDA模型
    江雨燕
    李平
    王清
    [J]. 电子学报, 2013, 41 (09) : 1794 - 1799
  • [2] Fast multi-label core vector machine
    Xu, Jianhua
    [J]. PATTERN RECOGNITION, 2013, 46 (03) : 885 - 898
  • [3] Classifier chains for multi-label classification
    Read, Jesse
    Pfahringer, Bernhard
    Holmes, Geoff
    Frank, Eibe
    [J]. MACHINE LEARNING, 2011, 85 (03) : 333 - 359
  • [4] An extended one-versus-rest support vector machine for multi-label classification
    Xu, Jianhua
    [J]. NEUROCOMPUTING, 2011, 74 (17) : 3114 - 3124
  • [5] Multilabel Dimensionality Reduction via Dependence Maximization
    Zhang, Yin
    Zhou, Zhi-Hua
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2010, 4 (03)
  • [6] Sparsity preserving projections with applications to face recognition[J] . Lishan Qiao,Songcan Chen,Xiaoyang Tan.Pattern Recognition . 2009 (1)
  • [7] Feature selection for multi-label naive Bayes classification
    Zhang, Min-Ling
    Pena, Jose M.
    Robles, Victor
    [J]. INFORMATION SCIENCES, 2009, 179 (19) : 3218 - 3229
  • [8] Label ranking by learning pairwise preferences[J] . Eyke Hüllermeier,Johannes Fürnkranz,Weiwei Cheng,Klaus Brinker.Artificial Intelligence . 2008 (16)
  • [9] Multilabel classification via calibrated label ranking
    Fuernkranz, Johannes
    Huellermeier, Eyke
    Mencia, Eneldo Loza
    Brinker, Klaus
    [J]. MACHINE LEARNING, 2008, 73 (02) : 133 - 153
  • [10] M L-KNN : A lazy learning approach to multi-label learning[J] . Min-Ling Zhang,Zhi-Hua Zhou.Pattern Recognition . 2007 (7)