Polar Functions of Multiparameter Bifractional Brownian Sheets

被引:1
作者
Zhenlong Chen College of Statistics and MathematicsZhejiang Gongshang UniversityHangzhou China [310018 ]
机构
关键词
Bifractional Brownian sheet; polar function; Hausdorff dimension; packing dimension; capacity;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
<正>Let BH,K={BH,K(t),t∈R+N be an(N,d)-bifractional Brownian sheet with Hurst indices H=(H1,…,HN)∈(0,1)N and K=(K1,…,KN)∈(0,1]N.The characteristics of the polar functions for BH,K are investigated.The relationship between the class of continuous functions satisfying the Lipschitz condition and the class of polar-functions of BH,K is presented.The Hausdorff dimension of the fixed points and an inequality concerning the Kolmogorov's entropy index for BH,K are obtained.A question proposed by LeGall about the existence of no-polar,continuous functions statisfying the H(?)lder condition is also solved.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 10 条
[1]   布朗单的极函数 [J].
陈振龙 .
数学杂志, 1995, (04) :509-516
[2]   Aquifer operator scaling and the effect on solute mixing and dispersion [J].
Benson, DA ;
Meerschaert, MM ;
Baeumer, B ;
Scheffler, HP .
WATER RESOURCES RESEARCH, 2006, 42 (01)
[3]   Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets [J].
Ayache, A ;
Xiao, YM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (04) :407-439
[4]   Anisotropic analysis of some Gaussian models [J].
Bonami, A ;
Estrade, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (03) :215-236
[5]   Local times of fractional Brownian sheets [J].
Xiao, YM ;
Zhang, TS .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (02) :204-226
[6]   A most probable path approach to queueing systems with general Gaussian input [J].
Mannersalo, P ;
Norros, I .
COMPUTER NETWORKS, 2002, 40 (03) :399-412
[7]   Identification of the Hurst Index of a Step Fractional Brownian Motion [J].
Albert Benassi ;
Pierre Bertrand ;
Serge Cohen ;
Jacques Istas .
Statistical Inference for Stochastic Processes, 2000, 3 (1-2) :101-111
[8]  
Possible long-range dependence in fractional random fields[J] . V.V. Anh,J.M. Angulo,M.D. Ruiz-Medina.Journal of Statistical Planning and Inference . 1999 (1)
[9]   POLAR-FUNCTIONS FOR BROWNIAN-MOTION [J].
GRAVERSEN, SE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (02) :261-270
[10]  
Two definitions of fractional dimension[J] . Claude Tricot.Mathematical Proceedings of the Cambridge Philoso . 1982 (1)