A three level linearized compact difference scheme for the Cahn-Hilliard equation

被引:0
|
作者
LI Juan 1
2 Yingtian College
机构
关键词
Cahn-Hilliard equation; compact difference scheme; convergence; solvability; conservation; energy non-increase;
D O I
暂无
中图分类号
O175.7 [差分微分方程];
学科分类号
070104 ;
摘要
This article is devoted to the study of high order accuracy difference methods for the Cahn-Hilliard equation.A three level linearized compact difference scheme is derived.The unique solvability and unconditional convergence of the difference solution are proved.The convergence order is O(τ 2 + h 4 ) in the maximum norm.The mass conservation and the non-increase of the total energy are also verified.Some numerical examples are given to demonstrate the theoretical results.
引用
收藏
页码:800 / 821
页数:22
相关论文
共 50 条
  • [21] A numerical scheme for the solution of viscous Cahn-Hilliard equation
    Momani, Shaher
    Erturk, Vedat Suat
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 663 - 669
  • [22] Stochastic Cahn-Hilliard equation
    DaPrato, G
    Debussche, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) : 241 - 263
  • [23] A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient
    Choo, SM
    Chung, SK
    Lee, YJ
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 207 - 219
  • [24] Solutions of the Cahn-Hilliard equation
    Ugurlu, Yavuz
    Kaya, Dogan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3038 - 3045
  • [25] Two-level methods for the Cahn-Hilliard equation
    Liu, Qingfang
    Hou, Yanren
    Wang, Zhiheng
    Zhao, Jiakun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 126 : 89 - 103
  • [26] ON THE STOCHASTIC CAHN-HILLIARD EQUATION
    ELEZOVIC, N
    MIKELIC, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (12) : 1169 - 1200
  • [27] The convective Cahn-Hilliard equation
    Eden, A.
    Kalantarov, V. K.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 455 - 461
  • [28] On a fractional step-splitting scheme for the Cahn-Hilliard equation
    Aderogba, A. A.
    Chapwanya, M.
    Djoko, J. K.
    ENGINEERING COMPUTATIONS, 2014, 31 (07) : 1151 - 1168
  • [29] A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION
    Wang, Junping
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 211 - 235
  • [30] An explicit conservative Saul'yev scheme for the Cahn-Hilliard equation
    Yang, Junxiang
    Li, Yibao
    Lee, Chaeyoung
    Lee, Hyun Geun
    Kwak, Soobin
    Hwang, Youngjin
    Xin, Xuan
    Kim, Junseok
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 217