Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion

被引:3
|
作者
S.Weber [1 ]
C.Riconda [2 ]
机构
[1] Institute of Physics of the ASCR, ELI-Beamlines
关键词
inertial confinement fusion; shock ignition; laser–plasma interaction; parametric instabilities;
D O I
暂无
中图分类号
TL632 [惯性约束装置];
学科分类号
摘要
The role of the coronal electron plasma temperature for shock-ignition conditions is analysed with respect to the dominant parametric processes: stimulated Brillouin scattering, stimulated Raman scattering, two-plasmon decay(TPD), Langmuir decay instability(LDI) and cavitation. TPD instability and cavitation are sensitive to the electron temperature. At the same time the reflectivity and high-energy electron production are strongly affected. For low plasma temperatures the LDI plays a dominant role in the TPD saturation. An understanding of laser–plasma interaction in the context of shock ignition is an important issue due to the localization of energy deposition by collective effects and hot electron production.This in turn can have consequences for the compression phase and the resulting gain factor of the implosion phase.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 50 条
  • [1] Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion
    Weber, S.
    Riconda, C.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2015, 3
  • [2] Progress in the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Casner, A.
    Nora, R.
    Ribeyre, X.
    Lafon, M.
    Anderson, K. S.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Frenje, J. A.
    Glebov, V. Yu.
    Gotchev, O. V.
    Hohenberger, M.
    Hu, S. X.
    Marshall, F. J.
    McCrory, R. L.
    Meyerhofer, D. D.
    Perkins, L. J.
    Sangster, T. C.
    Schurtz, G.
    Seka, W.
    Smalyuk, V. A.
    Stoeckl, C.
    Yaakobi, B.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [3] Initial experiments on the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Betti, R.
    Stoeckl, C.
    Anderson, K. S.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Marshall, F. J.
    Maywar, D. N.
    McCrory, R. L.
    Meyerhofer, D. D.
    Radha, P. B.
    Sangster, T. C.
    Seka, W.
    Shvarts, D.
    Smalyuk, V. A.
    Solodov, A. A.
    Yaakobi, B.
    Zhou, C. D.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Perkins, L. J.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [4] Shock-ignition effect in indirect-drive inertial confinement fusion approach
    Gus'kov, S. Yu.
    Vergunova, G. A.
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [5] Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme
    Temporal, M.
    Ramis, R.
    Canaud, B.
    Brandon, V.
    Laffite, S.
    Le Garrec, B. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [6] Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion
    Riconda, C.
    Weber, S.
    Tikhonchuk, V. T.
    Heron, A.
    PHYSICS OF PLASMAS, 2011, 18 (09)
  • [7] Interplay between parametric instabilities in the context of inertial confinement fusion
    Baldis, HA
    Labaune, C
    PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (5A) : 51 - 57
  • [8] Spherical strong-shock generation for shock-ignition inertial fusion
    Theobald, W.
    Nora, R.
    Seka, W.
    Lafon, M.
    Anderson, K. S.
    Hohenberger, M.
    Marshall, F. J.
    Michel, D. T.
    Solodov, A. A.
    Stoeckl, C.
    Edgell, D. H.
    Yaakobi, B.
    Casner, A.
    Reverdin, C.
    Ribeyre, X.
    Shvydky, A.
    Vallet, A.
    Peebles, J.
    Beg, F. N.
    Wei, M. S.
    Betti, R.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [9] Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion
    Tentori, A.
    Colaitis, A.
    Theobald, W.
    Casner, A.
    Raffestin, D.
    Ruocco, A.
    Trela, J.
    Le Bel, E.
    Anderson, K.
    Wei, M.
    Henderson, B.
    Peebles, J.
    Scott, R.
    Baton, S.
    Pikuz, S. A.
    Betti, R.
    Khan, M.
    Woolsey, N.
    Zhang, S.
    Batani, D.
    PHYSICS OF PLASMAS, 2021, 28 (10)
  • [10] Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility
    Perkins, L. J.
    Betti, R.
    LaFortune, K. N.
    Williams, W. H.
    PHYSICAL REVIEW LETTERS, 2009, 103 (04)