Laplace-Beltrami Differentiability of Positive Definite Kernels on the Sphere

被引:0
作者
M. H. CASTRO [1 ]
V. A. MENEGATTO [2 ]
C. P. OLIVEIRA [3 ]
机构
[1] Faculdade de Matemática, Universidade Federal de Uberladia,Caixa Postal 593 38400-902, Uberlandia MG, Brasil
[2] Departamento de Matemática, ICMC-USP,Sao Carlos,Caixa Postal 668 13560-970, Sao Carlos SP, Brasil
[3] ICE-DMC, Universidade Federal de Itajubá,37500-903 Itajubá MG, Brasil
基金
巴西圣保罗研究基金会;
关键词
Sphere; Laplace-Beltrami operator; Laplace-Beltrami derivative; positive definite kernels; spherical harmonics;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
This contribution gives results on the action of the Laplace-Beltrami derivative on sufficiently smooth kernels on the sphere, those defined by absolutely and uniformly expansions generated by a family of at least continuous functions. Among other things, the results show that convenient Laplace-Beltrami derivatives of positive definite kernels on the sphere are positive definite too. We also include similar results on the action of the Laplace-Beltrami derivative on condensed spherical harmonic expansions.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 24 条
[1]  
Error bounds for solving pseudodifferential equations on spheres. T.M. Morton,M. Neamtu. Journal of Approximation Theory . 2002
[2]   EIGENVALUE DECAY OF POSITIVE INTEGRAL OPERATORS ON THE SPHERE [J].
Castro, M. H. ;
Menegatto, V. A. .
MATHEMATICS OF COMPUTATION, 2012, 81 (280) :2303-2317
[3]   OLD AND NEW ON THE LAPLACE-BELTRAMI DERIVATIVE [J].
Menegatto, V. A. ;
Piantella, A. C. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (03) :309-341
[4]   DIFFERENTIABLE POSITIVE DEFINITE KERNELS ON SPHERES [J].
Menegatto, V. A. ;
Oliveira, C. P. ;
Peron, A. P. .
JOURNAL OF APPLIED ANALYSIS, 2009, 15 (01) :101-117
[5]  
Integral operators on the sphere generated by positive definite smooth kernels[J] . J.C. Ferreira,V.A. Menegatto,A.P. Peron. &nbspJournal of Complexity . 2008 (5)
[6]  
Old and new on the Laplace–Beltrami derivative. Menegatto,V.A,Piantella,A.C. Numer.Funct.Anal.Optim . 2011
[7]  
Uniqueness theory for Laplace series[J] . Walter Rudin. &nbsptran . 1950 (2)
[8]  
Uber die Approximationsordnung bei Kugelfunktionen und Algebraischen Polynomen. Pawelke,S. The Tohoku MaThematical Journal . 1972
[9]  
Uniqueness theory for Laplace series. Rudin,W. Transactions of the American Mathematical Society . 1950
[10]  
Legendre-Transformationsmethoden und Approximation von Funktionen auf der Einheit-skugel in R3. Wehrens,M. RWTH Aachen . 1980