Local Unitary Invariants for Multipartite Quantum Systems

被引:0
|
作者
王静 [1 ,2 ]
李明 [2 ,3 ]
费少明 [1 ,3 ]
李先清 [3 ]
机构
[1] School of Mathematical Sciences, Capital Normal University
[2] College of the Science, China University of Petroleum,Qingdao
[3] Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
local unitary invaviants; quantum entanlement; reduced matrices;
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
摘要
We present an approach of constructing invariants under local unitary transformations for multipartite quantum systems. The invariants constructed in this way can be complement to that in [Science 340(2013) 1205-1208].Detailed examples are given to compute such invariant in detail. It is shown that these invariants can be used to detect the local unitary equivalence of degenerated quantum states.
引用
收藏
页码:673 / 676
页数:4
相关论文
共 50 条
  • [21] Representation class and geometrical invariants of quantum states under local unitary transformations
    Yu, Zu-Huan
    Li-Jost, Xian-Qing
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (06) : 795 - 803
  • [22] Entanglement evolution in multipartite cavity-reservoir systems under local unitary operations
    W. Wen
    Y. -K. Bai
    H. Fan
    The European Physical Journal D, 2011, 64 : 557 - 563
  • [23] Entanglement evolution in multipartite cavity-reservoir systems under local unitary operations
    Wen, W.
    Bai, Y. -K.
    Fan, H.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 64 (2-3): : 557 - 563
  • [24] π-local Operations in Composite Quantum Systems with Applications to Multipartite Entanglement
    Gielerak, Roman
    Sawerwain, Marek
    COMPUTER NETWORKS, 2011, 160 : 1 - 10
  • [25] Local unitary equivalence and entanglement of multipartite pure states
    Kraus, B.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [26] Computing local invariants of quantum-bit systems
    Grassl, M
    Rotteler, M
    Beth, T
    PHYSICAL REVIEW A, 1998, 58 (03): : 1833 - 1839
  • [27] Regression of Concurrence via Local Unitary Invariants
    Li, Ming
    Wang, Wenjun
    Zhang, Xiaoyu
    Wang, Jing
    Li, Lei
    Shen, Shuqian
    ENTROPY, 2024, 26 (11)
  • [28] Local unitary invariants of generic multiqubit states
    Jing, Naihuan
    Fei, Shao-Ming
    Li, Ming
    Li-Jost, Xianqing
    Zhang, Tinggui
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [29] Unitarily inequivalent local and global Fourier transforms in multipartite quantum systems
    Lei, C.
    Vourdas, A.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [30] Optimizing dichotomic local phase measurement settings for multipartite quantum systems
    Ding, Dong
    He, Ying-Qiu
    Yan, Feng-Li
    Gao, Ting
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (26)