A Globally Convergent Polak-Ribiere-Polyak Conjugate Gradient Method with Armijo-Type Line Search

被引:4
作者
Gaohang Yu
机构
关键词
Unconstrained optimization: conjugate gradient method; nonconvex minimization; global convergence;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and less demanding than those defined in [4,10]. A favorite property of this method is that we can choose the initial stepsize as the one-dimensional minimizer of a quadratic modelΦ(t):= f(xk)+tgkTdk+(1/2) t2dkTQkdk, where Qk is a positive definite matrix that carries some second order information of the objective function f. So, this line search may make the stepsize tk more easily accepted. Preliminary numerical results show that this method is efficient.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 3 条
  • [1] Conjugate gradient methods with Armijo-type line searches
    Dai Y.-H.
    [J]. Acta Mathematicae Applicatae Sinica, 2002, 18 (1) : 123 - 130
  • [2] A globally convergent version of the Polak-Ribière conjugate gradient method[J] . L. Grippo,S. Lucidi.Mathematical Programming . 1997 (3)
  • [3] Efficient generalized conjugate gradient algorithms, part 1: Theory[J] . Y. Liu,C. Storey.Journal of Optimization Theory and Applications . 1991 (1)