Complete Moment and Integral Convergence for Sums of Negatively Associated Random Variables

被引:2
|
作者
Andrew ROSALSKY [1 ]
机构
[1] Department of Statistics, University of Florida
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Baum-Katz’s law; Lai’s law; complete moment convergence; complete integral convergence; convergence rate of tail probabilities; sums of identically distributed and negatively associated random variables;
D O I
暂无
中图分类号
O211.5 [随机变量];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a sequence of identically distributed negatively associated random variables {X; n≥1} with partial sums S=(?)=1 X, n≥1, refinements are presented of the classical Baum-Katzand Lai complete convergence theorems. More specifically, necessary and sufficient moment conditionsare provided for complete moment convergence of the formto hold where r >1, q >0 and either no = 1,0 <p <2,a= 1,b= n or no = 3,p = 2, a=(log n), b= n log n. These results extend results of Chow and of Li and Spataru from the independentand identically distributed case to the identically distributed negatively associated setting. Thecomplete moment convergence is also shown to be equivalent to a form of complete integral convergence.
引用
收藏
页码:419 / 432
页数:14
相关论文
共 50 条