On Singular Sets of Local Solutions to p-Laplace Equations

被引:0
作者
Hongwei LOU Key Laboratory of Mathematics for Nonlinear Sciences
机构
基金
中国国家自然科学基金;
关键词
Singular set; p-Laplace equation; Optimal control; Existence;
D O I
暂无
中图分类号
O232 [最优控制];
学科分类号
070105 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
The author proves that the right-hand term of a p-Laplace equation is zero on the singular set of a local solution to the equation. Such a result is used to study the existence of an optimal control problem.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 11 条
[1]  
On Harnack’s theorem for elliptic differential equations. Moser,J. Communications on Pure and Applied Mathematics . 1961
[2]  
Partial Differential Equations and Continuum Mechanics. Morrey,C.B Jr. Univ.of Wisconsin Press . 1961
[3]  
Distributed Control of Systems Governed by a General Class of Quasilinear Elliptic Equations. Casas E. and Fernandez L. A. Journal of Differential Equations . 1993
[4]  
Troianiello,GM. Elliptic Differential Equations and Obstacle Problems . 1987
[5]  
Existence of optimal controls for semilinear elliptic equations without Cesari type conditions. LOU H. ANZIAM Journal . 2003
[6]  
Existence of optimal controls for semilinear elliptic equations without Cesari-type conditions[J] . Hongwei Lou. &nbspThe ANZIAM Journal . 2003 (1)
[7]  
Elliptic Partial Differential Equations of Second order. Gilbarg D,Trudinger N S. Springer-Ver-lag . 1983
[8]  
Regularity for a more general class of quasilinear elliptic equations. Tolksdorf P. Journal of Differential Equations . 1984
[9]  
C1+α Local Regularity of Weak Solutions of Degenerate Elliptic Equations. Dibenedetto E. Nonlinear Analysis Theory Methods Applications . 1983
[10]  
Existence of Optimal Controls for Semilinear Parabolic Equations without Cesari-Type Conditions. Lou,H. Journal of Applied Mathematics . 2003