Low Dimensional Cohomology of Hom-Lie Algebras and q-deformed W(2, 2) Algebra

被引:0
|
作者
La Mei YUAN [1 ]
Hong YOU [1 ,2 ]
机构
[1] Science Research Center, Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology
[2] School of Mathematical Sciences, Suzhou University
基金
中国博士后科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Hom-Lie algebras; q-deformed W(2; 2) algebra; derivation; second cohomology group; first cohomology group;
D O I
暂无
中图分类号
O154.2 [同调代数];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed W(2, 2) algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie algebras.As application, we compute all αk-derivations and in particular the first cohomology group of the q-deformed W(2, 2) algebra.
引用
收藏
页码:1073 / 1082
页数:10
相关论文
共 50 条
  • [21] On 3-dimensional complex Hom-Lie algebras
    Garcia-Delgado, R.
    Salgado, G.
    Sanchez-Valenzuela, O. A.
    JOURNAL OF ALGEBRA, 2020, 555 : 361 - 385
  • [22] Classification of 3-dimensional Hom-Lie algebras
    Ongong'a, Elvice
    Richter, Johan
    Silvestrov, Sergei
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [23] Fuzzy torus and q-deformed Lie algebra
    Nakayama, Ryuichi
    PHYSICS LETTERS B, 2006, 638 (2-3) : 283 - 287
  • [24] Cohomology of q-Deformed Witt–Virasoro Superalgebras of the Hom Type
    A. Makhlouf
    N. Saadaoui
    Ukrainian Mathematical Journal, 2020, 71 : 1763 - 1780
  • [25] A Realization of Hom-Lie Algebras by Iso-Deformed Commutator Bracket
    Li, Xiuxian
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [26] Lie polynomials in q-deformed Heisenberg algebras
    Cantuba, Rafael Reno S.
    JOURNAL OF ALGEBRA, 2019, 522 : 101 - 123
  • [27] Some comments on q-deformed oscillators and q-deformed su(2) algebras
    Kwek, LC
    Oh, CH
    EUROPEAN PHYSICAL JOURNAL C, 1998, 5 (01): : 189 - 193
  • [28] Cohomology and Deformation Theory of O-Operators on Hom-Lie Conformal Algebras
    Asif, Sania
    Wang, Yao
    Mosbahi, Bouzid
    Basdouri, Imed
    SSRN,
  • [29] Generalized derivations and Hom-Lie algebra structures on sl2
    Garcia-Delgado, R.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2741 - 2755
  • [30] GEOMETRIC STRUCTURES ON 3-DIMENSIONAL HOM-LIE ALGEBRAS
    Farhangdoost, Mohammad Reza
    Ziabari, Reyhaneh Bahrami
    Armakan, Abdoreza
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2022, 20 (02) : 137 - 175