BIFURCATION AND COMPLEXITY IN A RATIO-DEPENDENT PREDATOR-PREY CHEMOSTAT WITH PULSED INPUT

被引:1
作者
Zhao ZhongSong Xinyu Deptof ApplMathDalian Univof TechDalian China Deptof MathHuanghuai CollegeZhumadian China Deptof MathXinyan Normal UnivHenan China [1 ,2 ,3 ,1 ,116024 ,2 ,463000 ,3 ,464000 ]
机构
关键词
chemostat model; periodical solution; stability; bifurcation;
D O I
暂无
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
<正>In this paper,a three dimensional ratio-dependent chemostat model with period- ically pulsed input is considered.By using the discrete dynamical system determined by the stroboscopic map and Floquet theorem,an exact periodic solution with positive concentrations of substrate and predator in the absence of prey is obtained.Whenβis less than some criti- cal value the boundary periodic solution(xs(t),0,zs(t))is locally stable,and whenβis larger than the critical value there are periodic oscillations in substrate,prey and predator.Increasing the impulsive period T,the system undergoes a series of period-doubling bifurcation leading to chaos,which implies that the dynamical behaviors of the periodically pulsed ratio-dependent predator-prey ecosystem are very complex.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 10 条
[1]  
Permanence and Complexity of a Three Species Food Chain with Impulsive Effect on the Top Predator[J] . Fengyan Wang,Shuwen Zhang,Lansun Chen,Lihua Sun.International Journal of Nonlinear Sciences and Numerical Simulation . 2005 (2)
[2]   Occurrence of multiple period-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems [J].
Venkatesan, A ;
Parthasarathy, S ;
Lakshmanan, M .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :891-898
[3]   Stability properties of pulse vaccination strategy in SEIR epidemic model [J].
d'Onofrio, A .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :57-72
[4]  
Density-dependent birth rate, birth pulses and their population dynamic consequences[J] . Sanyi Tang,Lansun Chen.Journal of Mathematical Biology . 2002 (2)
[5]   The dynamics of an infectious disease in a population with birth pulses [J].
Roberts, MG ;
Kao, RR .
MATHEMATICAL BIOSCIENCES, 1998, 149 (01) :23-36
[6]  
Pulse vaccination strategy in the SIR epidemic model[J] . Boris Shulgin,Lewi Stone,Zvia Agur.Bulletin of Mathematical Biology . 1998 (6)
[7]  
A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment[J] . John Carl Panetta.Bulletin of Mathematical Biology . 1996 (3)
[8]  
Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities[J] . Sergio Rinaldi,Simona Muratori,Yuri Kuznetsov.Bulletin of Mathematical Biology . 1992 (1)
[9]   COMPLEX DYNAMICS IN A MODEL MICROBIAL SYSTEM [J].
KOT, M ;
SAYLER, GS ;
SCHULTZ, TW .
BULLETIN OF MATHEMATICAL BIOLOGY, 1992, 54 (04) :619-648
[10]  
Predator-prey models in periodically fluctuating environments[J] . Martino Bardi.Journal of Mathematical Biology . 1982 (1)