Lipschitz Algebras and Peripherally-multiplicative Maps

被引:0
作者
A.JIM■NEZ-VARGAS
Moisés VILLEGAS-VALLECILLOS
机构
[1] Departamentode■lgebrayAnálisisMatemático,UniversidaddeAlmería,,Almería,Spain
关键词
Lipschitz algebra; peripherally-multiplicative map; spectrum-preserving map; peaking function; peripheral spectrum;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
070104 ;
摘要
<正> Let X be a compact metric space and let Lip(X)be the Banach algebra of all scalar-valued Lipschitz functions on X,endowed with a natural norm.For each f ∈Lip(X),σπ(f)denotesthe peripheral spectrum of f.We state that any map Φ from Lip(X)onto Lip(Y)which preservesmultiplicatively the peripheral spectrum:σπ(Φ(f)Φ(g))=σπ(fg),∨f,g∈Lip(X)is a weighted composition operator of the form Φ(f)=Υ·(foΦ)for all f ∈ Lip(X),where Υ:Y→{-1,1}is a Lipschitz function andΦ:Y→X is a Lipschitz homeomorphism.As a consequence ofthis result,any multiplicatively spectrum-preserving surjective map between Lip(X)-algebras is of theform above.
引用
收藏
页码:1233 / 1242
页数:10
相关论文
共 3 条
[1]   Uniform algebra isomorphisms and peripheral multiplicativity [J].
Luttman, Aaron ;
Tonev, Thomas .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (11) :3589-3598
[2]   Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties [J].
Hatori, O ;
Miura, T ;
Takagi, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2923-2930
[3]  
A characterization of maximal ideals[J] . Andrew M. Gleason.Journal d’Analyse Mathématique . 1967 (1)