Exact Soliton Solutions for the (2+1)-Dimensional Coupled Higher-Order Nonlinear Schr¨odinger Equations in Birefringent Optical-Fiber Communication

被引:1
作者
蔡跃进 [1 ]
白成林 [1 ,2 ]
罗清龙 [1 ,2 ]
机构
[1] School of Physics Science and Information Engineering, Liaocheng University
[2] Shandong Provincial Key Laboratory of Optical Communications Science and Technology
关键词
(2+1)-dimensional coupled higher-order nonlinear Schrdinger equations; soliton solutions; symbolic computation; Hirota method; interactions;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrdinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrdinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 33 条
[31]   Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system [J].
Weitian Yu ;
Wenjun Liu ;
Houria Triki ;
Qin Zhou ;
Anjan Biswas .
Nonlinear Dynamics, 2019, 97 :1253-1262
[32]   Symbolic computation and Novel solitons, traveling waves and soliton-like solutions for the highly nonlinear (2+1)-dimensional Schrödinger equation in the anomalous dispersion regime via newly proposed modified approach [J].
Ihsanullah Hamid ;
Sachin Kumar .
Optical and Quantum Electronics, 2023, 55
[33]   The G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\boldsymbol{G}^{\prime }}{\boldsymbol{G}},\frac{\boldsymbol{1}}{\boldsymbol{G}}\right)$$\end{document}-expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation [J].
Elsayed M. E. Zayed ;
Ayad M. Shahoot ;
Khaled A. E. Alurrfi .
Optical and Quantum Electronics, 2018, 50 (2)