Bahadur Representation of Nonparametric M-Estimators for Spatial Processes

被引:0
|
作者
Jia CHEN De Gui LI Li Xin ZHANG Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Bahadur representation; local linear M-estimator; spatial processes; strongly mixing;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
Under some mild conditions,we establish a strong Bahadur representation of a generalclass of nonparametric local linear M-estimators for mixing processes on a random field.If the so-called optimal bandwidth h=O(|n|,n ∈ Z~d,is chosen,then the remainder rates in the Bahadurrepresentation for the local M-estimators of the regression function and its derivative are of orderO(|n|log|n|).Moreover,we derive some asymptotic properties for the nonparametric local linearM-estimators as applications of our result.
引用
收藏
页码:1871 / 1882
页数:12
相关论文
共 50 条
  • [41] Continuous M-estimators and their interpolation by polynomials
    Pang, JS
    Yu, TPY
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 997 - 1017
  • [42] Asymptotic distribution of regression M-estimators
    Arcones, MA
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 97 (02) : 235 - 261
  • [43] Regression clustering with redescending M-estimators
    Garlipp, T
    Müller, CH
    INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 38 - 45
  • [44] Regularized M-Estimators of Scatter Matrix
    Ollila, Esa
    Tyler, David E.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (22) : 6059 - 6070
  • [45] M-estimators and robust fuzzy clustering
    Dave, RN
    Krishnapuram, R
    1996 BIENNIAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1996, : 400 - 404
  • [46] The bias and skewness of M-estimators in regression
    Withers, Christopher
    Nadarajah, Saralees
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1 - 14
  • [47] ON SHRINKAGE M-ESTIMATORS OF LOCATION PARAMETERS
    SALEH, AKME
    SEN, PK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (10) : 2313 - 2329
  • [48] M-estimators of location for functional data
    Sinova, Beatriz
    Gonzalez-Rodriguez, Gil
    Van Aelst, Stefan
    BERNOULLI, 2018, 24 (03) : 2328 - 2357
  • [49] MMLEs are as good as M-estimators or better
    Tiku, Mod L.
    Surucu, Baris
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (07) : 984 - 989
  • [50] Self-tuning M-estimators
    Agamennoni, G.
    Furgale, P.
    Siegwart, R.
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 4628 - 4635