Study on joint Bayesian model selection and parameter estimation method of GTD model

被引:0
作者
SHI ZhiGuang?
机构
关键词
RJ-MCMC; GTD model; scattering centers; parameter estimation; model order selection; ESPRIT; CRB;
D O I
暂无
中图分类号
TN953 [雷达跟踪系统];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
The Bayesian method is applied to the joint model selection and parameter estimation problem of the GTD model. An algorithm based on RJ-MCMC is designed. This algorithm not only improves the model order selection and parameter estimation accuracy by exploiting the priori information of the GTD model, but also solves the mixed parameter estimation problem of the GTD model properly. Its performance is tested using numerical simulations and data generated by electromagnetic code. It is shown that it gives good model order selection and parameter estimation results, especially for low SNR, closely-spaced components and short data situations.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 1 条
[1]  
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC .2 Andrieu,C.,Doucet,A. IEEE Trans SP . 1999