AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES

被引:0
|
作者
Haixia Liang and Erxiong Jiang Department of Mathematics
机构
关键词
Symmetric tridiagonal matrix; Jacobi matrix; Eigenvalue problem; Inverse eigenvalue problem;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
In this paper, we discuss an inverse eigenvalue problem for constructing a 2n×2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary condition for the solvability of the above problem is given in this paper. Furthermore, we present a new algorithm and give some numerical results.
引用
收藏
页码:620 / 630
页数:11
相关论文
共 50 条