Exact traveling wave solutions and dynamical behavior for the (n+1)-dimensional multiple sine-Gordon equation

被引:0
作者
Jibin LI Department of Mathematics Zhejiang Normal University Jinhua China Kunming University of Science and Technology Kunming China [321004 ,650093 ]
机构
关键词
nonlinear wave; bifurcation; exact explicit traveling wave solution; double sine-Gordon equation; multiple sine-Gordon equation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
<正>Using the methods of dynamical systems for the (n+ 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions axe obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 4 条
[1]  
Smooth and non-smooth travelling waves in a nonlinearly dispersive equation. Li J B,Liu Z R. Applied Mathematical Modelling . 2000
[2]  
Bounded travelling wave solutions for the (n+1)-dimensional sine- and sinh-Gordon equations. Li J B,Li M. Chaos, Solitons and Fractals . 2005
[3]  
The tanh method and a variable separated ODE method for solving double sine-Gordon equation. Wazwaz A M. Physics Letters A . 2006
[4]  
Travelling wave solutions for a class of nonlinear dispersive equations. Li J B,Liu Z R. Chin Ann of Math . 2002