New characterizations of Hajlasz-Sobolev spaces on metric spaces

被引:0
|
作者
杨大春
机构
[1] Beijing 100875
[2] China
[3] Department of Mathematics. Beijing Normal University
关键词
Sobolev space; Lipschitz-type space; embedding theorem; maximal function; space of homogeneous type;
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
070104 ;
摘要
This paper introduces the fractional Sobolev spaces on spaces of homogeneous type,includingmetric spaces and fractals. These Sobolev spaces include the well-known Hajfasz-Sobolev spaces as specialmodels.The author establishes varions chaaracterizations of(sharp)maximal functions for these spaces.Asapplications,the author identifies the fractional Sobolev spaces with some Lipscitz-type spaces.Moreover;some embedding theorems are also given.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [1] New characterizations of Hajlasz-Sobolev spaces on metric spaces
    Yang, DC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (05): : 675 - 689
  • [2] VARIABLE HAJLASZ-SOBOLEV SPACES ON COMPACT METRIC SPACES
    Gaczkowski, Michal
    Gorka, Przemyslaw
    MATHEMATICA SLOVACA, 2017, 67 (01) : 199 - 208
  • [3] A note on Hajlasz-Sobolev spaces on fractals
    Hu, JX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 280 (01) : 91 - 101
  • [4] Sobolev Embeddings for Fractional Hajlasz-Sobolev Spaces in the Setting of Rearrangement Invariant Spaces
    Martin, Joaquim
    Ortiz, Walter A.
    POTENTIAL ANALYSIS, 2023, 59 (03) : 1191 - 1204
  • [5] Embeddings of variable Hajlasz-Sobolev spaces into Holder spaces of variable order
    Almeida, Alexandre
    Samko, Stefan
    ARMENIAN JOURNAL OF MATHEMATICS, 2008, 1 (04): : 19 - 31
  • [6] Embeddings of variable Hajlasz-Sobolev spaces into Holder spaces of variable order
    Almeida, Alexandre
    Samko, Stefan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) : 489 - 496
  • [7] New characterizations of Sobolev metric spaces
    Di Marino, Simone
    Squassina, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (06) : 1853 - 1874
  • [8] Littlewood-Paley Characterizations of Hajlasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls
    Chang, Der-Chen
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    POTENTIAL ANALYSIS, 2017, 46 (02) : 227 - 259
  • [9] Hajlasz-Sobolev type spaces and p-energy on the Sierpinski gasket
    Hu, JX
    Ji, Y
    Wen, ZY
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (01) : 99 - 111
  • [10] The grand Lusin-area characterization of Hajlasz-Sobolev spaces and Triebel-Lizorkin spaces
    Jiang, Xiaojuan
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (07) : 691 - 711