THE WAVELET ANALYSIS METHOD OF STATIONARY RANDOM PROCESSES

被引:0
|
作者
骆少明
张湘伟
机构
关键词
wavelet transform; spectral analysis; correlation function;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
The spectral analysis of stationary random processes is studied by using wavelet transform method.On the basis of wavelet transform, the conception of time-frequency pewer spectral density of random processes and time-frequency cross-spectral density of jointly stationary random processes are presented. The characters of the timefrequency power spectral density and its relationship with traditional power spectral density are also studied in details.
引用
收藏
页码:929 / 935
页数:7
相关论文
共 50 条
  • [11] Adaptive correlation analysis of locally stationary random processes
    Pogribnoi, VA
    Rozhakovskii, IV
    Dzhytsimski, Z
    Sobulski, A
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1996, 39 (5-6): : 24 - 32
  • [12] Adaptive correlation analysis of locally stationary random processes
    Pogribnoj, V.A.
    Rozhankovskij, I.V.
    Dzhytsimskij, Z.
    Sobul'skij, A.
    Izvestiya VUZ: Radioelektronika, 1996, 39 (05): : 24 - 32
  • [13] RANDOM STATIONARY-PROCESSES
    ALEXANDER, KS
    KALIKOW, SA
    ANNALS OF PROBABILITY, 1992, 20 (03): : 1174 - 1198
  • [14] Trend locally stationary wavelet processes
    McGonigle, Euan T.
    Killick, Rebecca
    Nunes, Matthew A.
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (06) : 895 - 917
  • [15] On the theory of stationary random processes
    Cramer, H
    ANNALS OF MATHEMATICS, 1940, 41 : 215 - 230
  • [16] The compressibility of stationary random processes
    McCoy, JW
    Magotra, N
    Stearns, S
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2527 - 2530
  • [17] A Novel Efficient Method for Simulating Non-Stationary Random Processes Combining Generalized Harmonic Wavelet and Stochastic Harmonic Function
    Wang, Ding
    Yu, Feixiang
    Xu, Shan
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [18] Adaptive correlation analysis of local-stationary random processes
    Pogribnoi, V. A.
    Rozhankovskii, I. V.
    Dzhytsymski, Z.
    Sobul'ski, A.
    Radioelectronics and Communications Systems, 39 (05):
  • [19] POWER SPECTRAL ANALYSIS OF NON-STATIONARY RANDOM PROCESSES
    PRIESTLEY, MB
    JOURNAL OF SOUND AND VIBRATION, 1967, 6 (01) : 86 - +
  • [20] Spectral analysis of stationary components of periodically correlated random processes
    Yavorskyj I.N.
    Kravets I.B.
    Mats'Ko I.Y.
    Radioelectronics and Communications Systems, 2011, 54 (8) : 451 - 463