Stochastic averaging method for estimating first-passage statistics of stochastically excited Duffing-Rayleigh-Mathieu system

被引:0
作者
Yongjun Wu Wang Fang Institute of AutomationSchool of Information Science and EngineeringEast China University of Science and TechnologyShanghai China Hangzhou Yiheng Technologies CoLtdE Wantang RoadHangzhou China [200237 ,2 ,28 ,310013 ]
机构
关键词
First-passage; Colored noise; Stochastic averaging; Reliability; Monte Carlo simulation;
D O I
暂无
中图分类号
O175.25 [椭圆型方程];
学科分类号
070104 ;
摘要
<正> The first-passage statistics of Duffing-Rayleigh-Mathieu system under wide-band colored noise excitationsis studied by using stochastic averaging method.The motionequation of the original system is transformed into two timehomogeneous diffusion Markovian processes of amplitudeand phase after stochastic averaging.The diffusion processmethod for first-passage problem is used and the correspon-ding backward Kolmogorov equation and Pontryagin equa-tion are constructed and solved to yield the conditionalreliability function and mean first-passage time with suitableinitial and boundary conditions.The analytical results areconfirmed by Monte Carlo simulation.
引用
收藏
页码:575 / 582
页数:8
相关论文
共 11 条
[1]   拟可积哈密顿系统中噪声诱发的混沌运动 [J].
甘春标 ;
郭乙木 .
力学学报, 2000, (05) :613-620
[2]  
Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems[J] . Maolin Deng,Weiqiu Zhu.Acta Mechanica Sinica . 2007 (4)
[3]  
Stochastic optimal control of first-passage failure for coupled Duffing–van der Pol system under Gaussian white noise excitations[J] . Wei Li,Wei Xu,Junfeng Zhao,Shaojuan Ma.Chaos, Solitons and Fractals . 2005 (5)
[4]   First-passage time of Duffing oscillator under combined harmonic and white-noise excitations [J].
Zhu, WQ ;
Wu, YJ .
NONLINEAR DYNAMICS, 2003, 32 (03) :291-305
[5]   Optimal bounded control of first-passage failure of quasi-integrable Hamiltonian systems with wide-band random excitation [J].
Zhu, WQ ;
Deng, ML ;
Huang, ZL .
NONLINEAR DYNAMICS, 2003, 33 (02) :189-207
[6]  
Solution of the First-Passage Problem by Advanced Monte Carlo Simulation Technique[J] . M. Labou.Strength of Materials . 2003 (6)
[7]   Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems [J].
Zhu, WQ ;
Huang, ZL ;
Deng, ML .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (06) :1057-1071
[8]   On Kamenev-type oscillation theorems for second-order differential equations with damping [J].
Wong, JSW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) :244-257
[9]   Interval criteria for oscillation of second-order linear ordinary differential equations [J].
Kong, Q .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) :258-270
[10]  
On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems[J] . B. F. Spencer,L. A. Bergman.Nonlinear Dynamics . 1993 (4)