Operators on the orthogonal complement of the Dirichlet space (Ⅱ)

被引:1
作者
YU Tao Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Sobolev space; Dirichlet space; dual Toeplitz operator; dual Hankel operator; Toeplitz operator;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper we first prove that a dual Hankel operator R φ on the orthogonal complement of the Dirichlet space is compact for φ∈ W 1,∞(D),and then that a semicommutator of two Toeplitz operators on the Dirichlet space or two dual Toeplitz operators on the orthogonal complement of the Dirichlet space in Sobolev space is compact.We also prove that a dual Hankel operator R φ with φ∈ W 1,∞(D) is of finite rank if and only if B φ is orthogonal to the Dirichlet space for some finite Blaschke product B,and give a sufficient and necessary condition for the semicommutator of two dual Toeplitz operators to be of finite rank.
引用
收藏
页码:2005 / 2012
页数:8
相关论文
共 7 条
  • [1] Operators on the orthogonal complement of the Dirichlet space
    Yu, Tao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 300 - 306
  • [2] Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space[J] . Tao Yu,Shi Yue Wu.Acta Mathematica Sinica, English Series . 2009 (2)
  • [3] Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols
    Guo, Kunyu
    Sun, Shunhua
    Zheng, Dechao
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) : 583 - 596
  • [4] Algebraic and spectral properties of dual Toeplitz operators
    Stroethoff, K
    Zheng, DC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (06) : 2495 - 2520
  • [5] Products of Toeplitz operators[J] . Sheldon Axler,Sun-Yung A. Chang,Donald Sarason.Integral Equations and Operator Theory . 1978 (3)
  • [6] Toeplitz operators on the Dirichlet space .2 Yu T. Integral Equations Operator Theory . 2010
  • [7] Finite Rank Toeplitz Operators on the Bergman Space .2 Luecking D H. Proc Amer Math Soc . 2008